
i

Approved for Public Release; Distribution Unlimited. 14-0391

ii

Executive Summary

The Department of Defense (DoD) needs an acquisition framework for information technology (IT) that

can keep pace with rapidly changing technologies and operations, including the challenges associated

with information assurance. Agile development practices can help the DoD to transform IT acquisition

by delivering capabilities faster and responding more effectively to changes in operations, technology,

and budgets. This guide provides DoD acquisition professionals with details on how to adopt Agile

practices within each element of their programs, thus helping them to succeed in an increasingly

complex environment.

Agile has emerged as the leading industry software development methodology, and has seen growing

adoption across the DoD and other federal agencies. Agile practices enable the DoD to achieve reforms

directed by Congress and DoD Acquisition Executives. DoD Instruction 5000.02 (Dec 2013) heavily

emphasizes tailoring program structures and acquisition processes to the program characteristics. Agile

development can achieve these objectives through:

 Focusing on small, frequent capability releases

 Valuing working software over comprehensive documentation

 Responding rapidly to changes in operations, technology, and budgets

 Actively involving users throughout development to ensure high operational value

Agile practices integrate planning, design, development, and testing into an iterative lifecycle to deliver

software at frequent intervals. Developers can demonstrate interim capabilities to users and

stakeholders monthly. These frequent iterations effectively measure progress, reduce technical and

programmatic risk, and respond to feedback and changes more quickly than traditional methods.

Programs can adopt Agile practices within current policy by tailoring program processes and structure to

deliver releases every 6–12 months. The DoD can apply Agile practices to the full range of IT product and

service acquisitions. Some practices can even be applied to non-IT acquisitions. Program managers

should evaluate the environment, constraints, and objectives to determine the right structure and

methods to apply.

Agile requires a set of processes, roles, and culture that will take time to employ. This guide is intended

to show how the DoD could tailor the Defense Acquisition Framework to benefit from Agile

development best practices. To succeed with an Agile approach, program managers need to work with

stakeholders representing the requirements, systems engineering, contracting, cost estimating, and

testing communities to design processes around short releases. Acquisition executives must also

streamline the decision process by empowering small, dynamic, government-contractor teams. Agile

cannot solve all of the DoD’s IT acquisition challenges, but offers a set of principles that can help reduce

cycle times and risks to deliver IT in a complex environment.

“The US joint force will be smaller and leaner. But its great strength will be that it will be

more agile, more flexible, ready to deploy quickly, innovative, and technologically advanced.

That is the force for the future.” - Secretary Panetta, Defense Security Review, 5 Jan 12

iii

Foreword

Department of Defense (DoD) program managers and executives have struggled for years to tailor the

Defense Acquisition Framework to promote delivery of information technology (IT) capabilities in small,

frequent releases – the approach that characterizes Agile development. Although broad adoption of

Agile methods across the commercial world has spawned countless books, articles, and websites, that

literature focuses specifically on the practices and culture of development teams operating within a

corporate setting. DoD acquisition professionals increasingly recognize the potential of Agile methods,

but don’t know how to apply Agile within the unique and complex DoD acquisition environment. This

guide seeks to adapt proven principles of Agile development specifically to the DoD context.

More and more federal acquisition programs have begun to integrate aspects of Agile development into

their strategy. Yet the DoD has not yet accumulated enough experience with Agile approaches to permit

rigorous analysis of strategies, methods, and outcomes. Given this lack of well-documented research

and of historical examples that other programs could use as models, we sought the views of experts

representing diverse acquisition disciplines on how to appropriately and effectively implement Agile

practices within current DoD policies. This guide draws on their insights to help program managers

better understand Agile fundamentals, how to structure and design a program to enable Agile

development, and how to partner with the process owners of various acquisition disciplines to execute

Agile processes. It presents options for structuring a program, developing a contract strategy, shaping

systems engineering processes, managing requirements, and developing cost estimates for programs

with a dynamic scope.

Experience indicates that cultural changes must occur if programs are to implement Agile effectively,

and that institutional resistance to these changes can prove especially hard to overcome. However, we

believe that with strong leadership, a well-informed program office, and a cohesive and committed

government and contractor team, Agile could enable the DoD to deliver IT capabilities faster and more

effectively than traditional incremental approaches.

The concepts in this guide will continue to evolve as more DoD programs adopt Agile practices and

managers gain additional insight on their successes and failures. We welcome your questions and

feedback on the guidebook so that future editions can continue to advance Agile strategies and

techniques across DoD. Please contact us at pmodigliani@mitre.org and sjchang@mitre.org.

Pete Modigliani and Su Chang

The MITRE Corporation

mailto:pmodigliani@mitre.org
mailto:sjchang@mitre.org

iv

Table of Contents

I. Introduction ... 1

1 Purpose .. 1

2 Agile Development Fundamentals ... 2

II. Implementing an Agile Approach.. 6

3 Deciding to Adopt an Agile Approach .. 6

4 Embracing the Agile Culture .. 8

5 Agile Teams .. 10

6 Tailoring Program Structure and Processes for Agile Development ... 15

7 Planning ... 17

III. Agile Acquisition Processes .. 20

8 Requirements ... 20

9 Systems Engineering .. 27

10 Contracting... 33

11 Cost Estimation .. 41

12 Metrics ... 45

13 Testing .. 48

14 Deployment/Sustainment .. 51

15 Pulling It All Together – Potential Agile Program Structures ... 52

16 Scaling Agile ... 54

17 Summary .. 57

Appendix A: Agile Resources... 58

Appendix B: GAO Report on Agile ... 60

Appendix C: Agile Roles and Responsibilities.. 61

Appendix D: DoD 5000 Information Requirements .. 64

Appendix E: Acronyms .. 68

v

Acknowledgments

This guidebook was created by The MITRE Corporation. We would like to thank the following people

who provided valuable subject matter expertise, contributions, and reviews:

 Michelle Casagni

 Tom Fugate

 Ann Chavtur

 Raj Agrawal

 Julia Taylor

 Pete Christensen

 Nancy Markuson

 Dr. Jim Dobbins

 Craig Braunschweiger

 TJ Restivo

 Hugh Goodwin

 Deborah Basilis

 Erin Schultz

 Margaret MacDonald

 Nadine Tronick

 Mike Janiga

1

I. Introduction

1 Purpose

The DoD needs an acquisition framework for IT that can keep pace with rapidly changing technologies

and operations, including the evolving cyber threat. Countless articles and reports have documented the

failure of IT programs in the current DoD acquisition environment. While acquisition executives

emphasize the need to tailor policies and processes for greater effectiveness, few can do so successfully.

This guide provides DoD acquisition professionals with details on how to adopt Agile development

practices to improve outcomes in today’s complex acquisition environment.

Agile has emerged as the leading industry software development methodology, with growing adoption

across the DoD and other federal agencies. Hundreds of books, articles, and websites describe Agile

development fundamentals. As illustrated in Figure 1, this document fills the void at the intersection of

Agile practices, DoD acquisition policies, and program office operations by digesting the extensive Agile

strategies and acquisition processes and provides guidance across all the major acquisition disciplines.

Specifically, it aids acquisition professionals within program offices that are exploring a more flexible

approach than the traditional defense acquisition framework to apply Agile principles effectively.

Figure 1 Agile Acquisition Guidebook Venn Diagram

Because there is no single right way to “do Agile,” program managers can adopt the Agile practices that

best suit their program and environment, New programs can develop an Agile structure and

environment from the start, while existing programs can iteratively modify their processes to adopt

more Agile practices.

Despite widespread use in industry, Agile is just starting to take root in federal acquisitions. The DoD has

already empowered some programs to incorporate many Agile practices, and a growing number of

programs continue to chart new paths in this field. This guide is intended to support that growth, as well

as to capture the best practices and lessons learned by these early Agile adopters. Broader, more

successful Agile execution will take time, trial and error, and shaping of processes, policies, and culture,

but with support from oversight and process owners can reach the full potential of Agile development.

Agile

Acquisition

Guide

2

This document is structured to provide an overview of Agile development and recommendations for

DoD adoption. It examines the major acquisition disciplines to describe potential tailored processes and

strategies. The blue boxes presented throughout the guide pose a series of key questions to help

acquisition professionals think critically about the Agile processes for a program. The guide also includes

dozens of hyperlinks to external sources for further research and information.

2 Agile Development Fundamentals

Agile development emerged in 2001, when 17 leading software developers created the Agile Manifesto

to design and share better ways to develop software. The values and 12 principles of the Agile

Manifesto can be distilled into four core elements:

 Focusing on small, frequent capability releases

 Valuing working software over comprehensive documentation

 Responding rapidly to changes in operations, technology, and budgets

 Actively involving users throughout development to ensure high operational value

Agile is built around a culture of small, dynamic, empowered teams actively collaborating with

stakeholders throughout product development. Agile development requires team members to follow

disciplined processes that require training, guidance, and culture change. While Agile does impose some

rigor, the method does not consist of simply following a set of prescribed processes, but is designed to

allow dynamic, tailored, and rapidly evolving approaches to support each organization’s IT environment.

“You never know less than on the day you begin your new project.

Each incremental delivery / review cycle adds knowledge and provides insights that

 the team could have never known when initial requirements were defined.”

— Steve Elfenbaum , CIO, Schafer Corp.

Each of the many existing Agile methods (e.g., Scrum, Extreme Programming (XP), Kanban, Test Driven

Development) has its own unique processes, terms, techniques, and timelines. Because Scrum is the

most widely used Agile methodology, this guide uses Scrum terms and processes, but DoD could employ

practices from all of these Agile methodologies. This guide addresses the distinct difference between a

company employing Agile methods internally and the government-contractor relationship in federal

acquisitions. The remainder of this section describes some common Agile terms to provide a lexicon for

this guide. Later sections will present more detail on the Agile processes and their application in DoD

programs.

The foundational structure of an Agile program is:

Release - Capability delivered to users, composed of multiple sprints

Sprint - Priority capabilities developed, integrated, tested, and demonstrated (aka: iteration)

Daily Scrum - Team synchronization meeting to plan activities and assess progress and impediments

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Kanban_(development)
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

3

A release comprises a series of sprints. As an example, consider Figure 2, which depicts a six-month

release with a series of one-month sprints. During each sprint, a daily scrum meeting takes place.

Figure 2 - Basic Agile Structure

Enabling an Agile environment demands some degree of up-front planning and design, but the method

emphasizes the importance of beginning development quickly. The fundamental assumption is that

requirements, designs, and capabilities will evolve as team members gain information during the

development process.

User Story – Description of functionality a user wants, small enough to complete in a single sprint

Epic – A large user story often defined for a release that spans multiple sprints

Theme – A grouping of user stories or epics that may span multiple releases

Teams often capture requirements in user stories and epics to provide a clear operational perspective of

the capability’s purpose. User stories are simple statements, accompanied by criteria defined for

acceptance testing. They are often further decomposed into tasks that define the lower level of detail to

be completed. Epics are aggregations of user stories, often used to capture strategic intent. Epics may

span multiple sprints and form a release, while user stories should be implemented within a single

sprint. Some teams add a third level: themes, which group epics or user stories and span multiple

releases.

Teams capture and prioritize themes, epics, and user stories in databases known as backlogs, evolving

prioritized queues of requirements identified by the operational and technical stakeholders. A product

owner or a scrum master manages the backlogs, updating them based on the results of releases and

sprints, changing operational priorities, or technical considerations.

Story Points – Unit of measurement to estimate relative complexity of user stories

Velocity – The amount of work the team estimates it can deliver in a sprint

Development teams, aided by cross-functional representatives, analyze each user story and use

measures known as story points to estimate the relative complexity of developing that capability. The

development team assigns points to each story following discussion and agreement among the

members. Teams may use a Fibonacci series, ideal days, or small-medium-large as units for assigning

story points. Over time, as the teams accumulate performance data, this iterative and incremental

http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Fibonacci_number

4

process improves accuracy in allocating points. Point values are often unique to the development team

and not a valid comparison across teams.

The team uses the size of the stories to determine the team's velocity: the number of story points the

team can complete in a sprint. This enables the team to plan the amount of work to accomplish in the

next sprint and continually measure its performance. Teams use burn down charts (Figure 3) to track

progress during a sprint.

Figure 3: Example Burn Down Chart

Program Backlog – Primary source of all requirements/desired functionality for the program

Release Backlog – Subset of the program backlog listing features intended for the release

Sprint Backlog – Subset of the release backlog listing the user stories to implement in the sprint

Planning occurs continually throughout the development activity. Teams populate the program backlog

during an initial planning session, identifying all features the team considers relevant to building the

product. The program backlog serves as the primary source for all program requirements and user

stories, and the team must prioritize the contents to ensure that the highest priority items are

implemented first. The team need not document all the requirements or features up front, as the

program backlog will evolve over time.

Subsequent strategic, high-level planning sessions focus on the release and sprint levels. They outline

the intent of a release, not a formal commitment. A release backlog typically comprises the highest

priority epics and user stories from the program backlog that the team can complete within the

established timeframe. The product owner maintains the release backlog with input from the users and

development team.

Sprint planning, during which the development team and product owner commit to a specific set of user

stories, then addresses the tactical-level details. During sprint planning, the team moves the highest

priority user stories from the release backlog to the sprint backlog, estimates effort for the sprint, and

often decomposes the stories into tasks. Typically, the scrum master and development team manage

the sprint backlog.

http://en.wikipedia.org/wiki/Burn_down_chart

5

The scope of a sprint, unlike that of a release, is locked. During sprint execution, the development team

runs through the full development cycle for each user story in the sprint backlog as shown in Figure 4.

Figure 4 Sprint Execution Cycle

The integrated nature of these lifecycle activities requires frequent communication and collaboration

among the team members. This occurs through the daily scrum: a short (e.g., 15-minute) stand-up

meeting. Each team member identifies his or her contributions by answering three questions:

1. What did you do yesterday?

2. What are you going to do today?

3. What obstacles are in your way?

At the end of each sprint, the development team demonstrates the functionality to users and other

stakeholders and receives feedback. The team then adds user requests for new features to the program

backlog, and places tasks that address defects and uncompleted or rejected stories back into the release

backlog. Prior to the next planning session, the team revisits the release and program backlogs to

reprioritize and adjust the scope accordingly. Upon sprint completion, the development team holds a

sprint retrospective to reflect on processes and adjust them as necessary.

Definition of Done – Agreeing on a clear understanding of what it means for a user story or piece of

functionality to be complete, or for a product increment to be ready for release.

The Scrum framework includes the concept of “Done,” which constitutes a critical aspect of ensuring

high-quality software. To be considered potentially releasable, a piece of functionality must adhere to a

common definition of completion. During planning sessions, stakeholders and sprint teams agree on the

criteria that a user story and release must meet to be considered done. For a user story, the definition

may include code completion, the level and types of testing, and (just enough) documentation. For a

release, the definition may include more rigorous testing such as regression testing, certification,

product owner approval, and release build. The “definition of done” does not change during a sprint, but

should be reviewed periodically and updated as processes improve.

“To become Agile, it is not sufficient to just install a handful of new tools, apply some new methods,

and rename your milestones to ‘iteration exit.’ Agile will challenge the way your organization is set

up, and it will affect the daily work of each individual.”

— Strober and Hansmann

http://books.google.com/books?id=DX9v4pqTDwkC&lpg=PA171&ots=wBx4Sn983x&dq=To%20become%20agile%2C%20it%20is%20not%20sufficient%20to%20just%20install%20a%20handful%20of%20new%20tools%2C%20apply%20some%20new%20methods%2C%20and%20rename%20your%20milestones%20to%20%E2%80%98iteration%20exit.%E2%80%99%20Agile%20will%20challenge%20the%20way%20your%20organization%20is%20set%20up%2C%20and%20it%20will%20affect%20the%20daily%20work%20of%20each%20individual&pg=PA170#v=onepage&q=To%20become%20agile,%20it%20is%20not%20sufficient%20to%20just%20install%20a%20handful%20of%20new%20tools,%20apply%20some%20new%20methods,%20and%20rename%20your%20milestones%20to%20%E2%80%98iteration%20exit.%E2%80%99%20Agile%20will%20challenge%

6

II. Implementing an Agile Approach

3 Deciding to Adopt an Agile Approach

Agile represents a radical shift from industrial age processes to a modern

management and development approach suited to the digital age. Agile

practices help to make progress and development more transparent,

enabling improved decision making by delivering more timely and accurate

information. However, Agile is not a panacea: it does not promise to solve all

IT and program management problems, and may not be appropriate for use

in all cases. Even successful adoption of Agile practices does not guarantee

program success, as many variables that affect success lie outside the

control of the government program manager and his team.

In the government context, Agile represents a good development approach when customizing an

existing system or commercial off-the-shelf (COTS) product, or building a small-scale or self-constrained

application. In other words, Agile works well when the program needs to modify software for

government purposes and/or integrate it into an existing operational baseline, system, or platform.

Although it may not be the easiest approach, the government can also use Agile to build a large IT

system from the ground up; however, in this case, it is absolutely critical that the development of the

architecture precede sprint development. Alternatively, a program can initially use a traditional

approach to build the initial increment that meets the baseline architecture requirements. Once the

program has established the baseline and framed the overall conceptual design, program managers can

consider shifting to an Agile approach for subsequent increments that build additional functionality into

the operational baseline. Several large acquisition programs, such as the Global Combat Support

System-Joint (GCSS-J), have adopted Agile methods to build a future increment or block of capability.

Before deciding to adopt Agile practices, program managers should first identify the best approach for

the project as a whole and/or for any subprojects within it. This includes assessing the project’s volatility

(to include requirements and technology), criticality, availability of resources, organizational culture, and

availability and commitment of the customer and stakeholders. Specifically, program managers should

examine the aspects listed in Table 1 when weighing adoption of Agile or traditional development

practices.

Table 1 Traditional Versus Agile Considerations

Consider Agile Practices Assessment Areas Consider Traditional Practices

Requirements cannot be well defined
upfront due to a dynamic operational

environment.

Requirements
Stability

Requirements have been relatively well
defined by the operational sponsor.

Requirements can be decomposed into
small tasks to support iterative

development.

Requirements
Divisibility

Requirements are tightly integrated
and are difficult to decompose.

Users welcome iterative development User Timelines Operational environment does not

7

Consider Agile Practices Assessment Areas Consider Traditional Practices

and require frequent capability upgrades
(<1 year).

allow iterative development or lacks
the ability to absorb frequent updates.

User representatives and end users are
able to frequently engage throughout

development.
User Involvement

Users cannot support frequent
interaction with the development team

or the target end user cannot be
accessed.

Program scope is mostly limited to the
application layer while using existing

infrastructure.
Program Scope

Program spans core capabilities and
underlying platform or infrastructure.

The government is responsible for
primary systems integration.

Systems
Integration

The government does not want to own
systems integration responsibilities.

Capabilities are operational at a basic
level, with some defects that can be

addressed in future releases.
System Criticality

Program supports a critical mission in
which defects may result in loss of life

or high security risks.

Industry has relevant domain experience
and Agile development expertise.

Developer
Expertise

Agile development expertise is
unavailable or lacks domain experience.

Program office has Agile training,
experience, and/or coaches.

Government
Expertise

Program office has no Agile experience
or funding for Agile training or coaches.

Program contract strategy supports short
Agile development timelines.

Contracting
Timelines

Contract strategy cannot support short
Agile development timelines.

Program Executive Office (PEO) or
subordinate has authority for most

program decisions.
Level of Oversight

Office of the Secretary of Defense
(OSD) or Service Acquisition Executive

(SAE) is the Milestone Decision
Authority (MDA) and requires most
decisions to be made at that level.

Development can be effectively managed
by a small cross-functional government

team.
Team Size

Many government stakeholders will be
involved in the software development

and decision-making process.

Government and developers can
collaborate frequently and effectively.

Collaboration

Stakeholders physically located across
multiple locations and have limited

bandwidth to support frequent
collaboration.

One or a few contractor(s) or teams can
perform development.

Complexity
Many contractors are required to

develop program elements.

Program can leverage test infrastructure
and automated tests, and testers are

active throughout development.
Test Environment

Extensive development and operational
testing is conducted serially following
development. Limited resources and

tools available to conduct parallel
development testing.

Leadership actively supports Agile
development practices and provides “top
cover” to use non-traditional processes

and methods.

Leadership
Support

Leadership prefers a traditional
development approach or is unfamiliar

with Agile practices.

8

Breaking large requirements into smaller iterations and working in small teams can help build agility into

a program, whether or not the program has officially adopted an Agile development approach. Thus, a

program can incrementally adopt Agile practices over time to position itself for success when it is ready

to commit to full-scale Agile adoption. However, when a program has decided to “go Agile” and formally

adopt the methodology as a development approach, the government must commit to making changes

across a number of areas. Engaged leadership is needed to support this transition and enable adoption

of Agile development processes.

The move to Agile requires time both to learn new practices and replace traditional and entrenched DoD

acquisition and development practices. Effective transition calls for some tailoring, because the nature

of government contractor relationships, DoD-unique processes and regulations, and dispersion of

government decision making authority make it impossible for the government to institute the pure Agile

environment that exists in the commercial sector.

Before committing their programs to the transition, program managers must understand and appreciate

each stakeholder’s risk tolerance and legal responsibilities, and provide clear and compelling evidence

that an Agile approach can reduce risk. Application of Agile practices may appear at first glance to

encroach upon traditional DoD risk reduction practices, which are optimized for weapon systems

acquisition. These traditional methods most often involve extensive analysis, planning, and

documentation, as well as large-scale reviews and milestones that ensure readiness to begin

development of highly complex and tightly integrated hardware and software. However, Agile

inherently serves as a risk mitigation strategy, since early working software products reduce risk by

validating requirements and performance characteristics rather than by conducting exhaustive paper

analysis. The requirements process prioritizes steps in the development to deliver the highest priority

capabilities to the user with each release. Moreover, smaller scale development efforts inherently carry

less risk, permitting a lightweight approach to documentation and review that is consistent with the

lower risk.

4 Embracing the Agile Culture

Agile practices, processes, and culture often run counter to those in the long-established defense

acquisition enterprise. The Agile model represents a change in the way DoD conducts business, and

programs must rethink how they are staffed, organized, and managed, as well as whether the business

processes, governance reviews, and funding models

that support an acquisition are structured to support

Agile.

To succeed, the Agile model depends on strong

commitments at all levels of the acquisition process.

First, Agile requires dedicated government involvement

throughout the entire process in order to plan and

integrate multiple releases, oversee development

cycles, manage evolving requirements, facilitate collaboration, and obtain committed, active, and

consistent user engagement. The government must establish a strong team to manage and complement

9

the Agile development contractor. The optimal structure to foster a collaborative environment features

physical co-location of the acquisition support team, which consists of the program staff, contractor, and

supporting functional areas. A good example can be found in the Air Force Integrated Strategic Planning

and Analysis Network (ISPAN) acquisition, an ACAT IAM MAIS program, which has the Government

program office, the contractor and end-users all located within a 7-mile radius. This close physical

proximity has enabled the ISPAN’s development team’s adoption of an Agile approach. In cases where

close physical proximity of the team is not practical or feasible, programs can use virtual teams with

synchronized daily meetings to develop predictable and routine meeting schedules to enhance

coordination.

Second, a culture of trust that spans the decision authority, developers, testing organization, acquirers,

program management, and users is critical to Agile delivery. This demands a technically competent

government team in addition to the development contactors. Close, dedicated acquisition teams

facilitate this model, but it must be further reinforced at the top. Leadership can signal that trust by

empowering team members with decision-making authority based on clearly communicating a high-

level strategy, requirements, and vision for the acquisition.

An analogy to the military term “Commander’s Intent” can clarify this concept. Commander’s Intent is a

concise expression of the purpose of an operation – a description of the desired end state and the way

that goal facilitates transition to future operations. It allows adaptation, so that a mission can continue

even when the operation does not go as planned. For Agile, the overall plan represents the intent. If the

plan does not work as expected, the team alters the plan while continuing to focus on the intent. This

requires the team to build relationships that promote trust, collaboration, transparency, and shared

responsibility.

The Government Accountability Office (GAO) report on “Effective Practices and Federal Challenges in

Applying Agile Methods,” recommends four organizational commitment and collaboration practices for

Agile implementations:

 Ensure all components involved in projects are committed to the organization’s Agile approach

 Identify an Agile champion within senior management

 Ensure all teams include coaches or staff with Agile experience

 Empower small, cross-functional teams

Implementing these practices will help facilitate the cultural changes necessary to make Agile effective.

As noted in the GAO report, several challenges relate to significant differences in how projects are

managed in an Agile environment versus a traditional development approach. Previous government

attempts with Agile have produced mixed to poor results because the government tried to implement

portions of Agile without changing some of the underlying development environments, tools, processes,

and culture, which remained oriented toward traditional development strategies. Rather than simply

follow a recipe of Agile methods and steps, programs should try to adopt the Agile philosophy and

http://www.gao.gov/products/GAO-12-681
http://www.gao.gov/products/GAO-12-681

10

mindset to instill program agility. Establishing an organizational change discipline and clear vision can

help to communicate the organizations strategy of adopting the Agile philosophy.

Lastly, the functional communities supporting acquisition today remain relatively divided and have only

weak ties to the program office. Agile practices require a complementary business environment to

provide the structure, discipline, and support for Agile development practices. For Agile to succeed, the

environment must facilitate close collaboration across multiple disciplines to support rapid development

cycles. A successful Agile framework depends on active support from multiple stakeholder communities,

including users, developers, systems engineers, and testing and certification staff, as well as DoD

leadership and oversight. Program managers must engage these key stakeholders to garner their

endorsement and feedback and to build an Agile culture that can be sustained throughout the lifecycle

of DoD IT programs.

5 Agile Teams

Agile development requires a new set of roles and

responsibilities for a contractor development team

and the government program office. Figure 5

shows a potential Agile team construct. At the

heart of an Agile development effort is the release

team responsible for execution. The release team

includes a core team composed of the project manager, product owner, tester, and system engineer,

and a development team led by a scrum master (scrum master and product owner are roles specific to

the Scrum methodology, and may vary if using other Agile methods). The broader extended team

includes primary stakeholders and representatives of functional support activities, to include the

acquisition leadership, contracting, test, Certification and Accreditation (C&A), the user community,

external systems, and cost and financial support.

11

Figure 5: Potential Agile Team Construct

While the roles may vary based on the Agile methodologies and level of integration, four roles recur in

almost all Agile activities.

 The product owner is the authoritative user community representative who manages the

backlog(s) and requirements prioritization, communicates operational concepts to the

development team, and provides continual feedback to development team on their

developments, demonstrations, storyboards, mockups, etc.

 The scrum master facilitates the processes, enforces the team's rules, and keeps the team

focused on tasks.

 The release team is a self-organizing team composed of <10 government and contractor

members who work closely together on the release.

 The development team typically is the contractor team of software developers, including

software and security engineers, data specialists, testers, quality assurance, and configuration

managers.

Ideally these participants are co-located in the same physical space.

While Agile practices depend upon highly skilled and disciplined team members, a cross-functional team

of mentors and experts working alongside junior-level team members can also succeed. Program offices

realize the best results when the team has at least one staff member with Agile or related expertise who

provides on-the-job training to the other staff and is committed to leading teams through successful

adoption of Agile practices.

12

Members of effective program teams understand their roles and responsibilities within an Agile program

and have confidence in their ability to perform them. The applicable Agile guidelines for obtaining the

necessary talent include:

 Recruit personnel with Agile, Lean, and related expertise to join the program team. Program

managers should look across programs in their higher level organization (e.g., PEO level) and

should advocate sharing of those critical skill assets.

 Bring in experts in Agile, Lean, and related methodologies to serve as Agile coaches and to

conduct on-the-job-training for the program office staff. These experts can make invaluable

contributions by guiding the program office to identify and improve roles, processes, and

techniques, while addressing any adoption issues. Agile coaches help bring all program

participants together under a common set of practices and guidelines.

Agile development often involves multiple teams working on a single program. For example, one team

could be assigned a release to develop in parallel with one or more other teams developing other

releases. This requires active coordination of efforts across the teams to ensure they are developing

towards a common solution. Adding development teams enables more software to be delivered

sooner, yet comes with increased risk to coordinate, integrate, and manage these developments and

teams. There are various approaches to structure a multi-team environment.

Figure 6 highlights multiple development teams (all contractors) each working on their own release. The

scrum masters of each team would meet regularly (e.g. weekly) with government personnel. This

approach may limit the government, particularly the product owner’s, involvement with the

development teams, but enables the development team to focus with limited interruption.

Figure 6 Multiple Development Teams Example

13

Figure 7 highlights multiple release teams of government and contractor personnel, with government

and contractor reps from each team regularly collaborating via a scrum-of-scrums. These reps can be

the PM and scrum master. A single product owner could support all the release teams and scrum-of-

scrums efforts. Team members can regularly collaborate with those in similar roles on other teams on

progress, designs, dependencies, issues, and resources. This approach focuses on an integrated

government-contractor release team, but could be more resource intensive.

Figure 7 Multiple Release Team Example

Management of Agile development requires a shift from the traditional model of directing projects from

the top down to one of trusting and empowering teams to make decisions and to collaborate on

solutions. This document refers primarily to program managers, developers, and users in a generic

manner; however, programs must operate in a trusting and cooperative manner across the government,

contractors, and development teams. This may require the government to refine or redefine existing

roles and consider new roles specific to Agile. Table 2 identifies recommended roles and responsibilities

for members of an Agile team. Appendix B contains a more complete description of roles and

responsibilities.

Table 2 Agile Roles and Responsibilities

Role Responsibilities

Program Manager
Manages the requirements, funding, and acquisition processes while also
overseeing the planning of each release and high-level program increment.

Project Manager*
Manages the development process for a release within a program increment
using time-boxed iterations that lead to releases and sprints of capability.

Product Owner Manages the requirements, tradeoffs, and collaboration between the

14

acquisition and user communities.

Scrum Master
Facilitates the developers as they execute their processes, shielding the team
from distractions. Enforces the development team rules and keeps the team
focused on tasks. Often manages the sprint backlog.

Developers
Develops the software, to include software developers, database
administrators and architects, testers, and other technical experts.

End Users
Conveys operational concepts and requirements/needs, participate in
continuous testing activities, and provides feedback on developed capabilities.

Enterprise Architect
Creates architectures and designs in an iterative manner to ensure that designs
evolve in a controlled way over the course of releases.

Independent Tester(s)
Validates the capabilities produced against the end users’ top-priority needs,
the design specifications, and standards.

Systems Engineer
Manages releases, overseeing system implementations, O&M, and transition,
and integrates all the engineering sub disciplines and specialty groups into a
team effort to create a structured development process.

Contracting Officer
Manages the solicitation, award, and execution of Agile development
contracts, and facilitates communication between government and contractor
staff.

Cost Estimator
Tracks and manages the overall program budgets; provides low-fidelity cost
estimates at the program-level for high-level increments, followed by detailed
cost estimates prior to the development of each release.

*In some small scale developments the program manager may fulfill the role of the project manager.

Key Questions to Validate Agile Teams/Roles:

 Are the major stakeholder roles and responsibilities clearly defined?

 Is there a clear owner of the requirements backlog?

 Is there a clear government integrator (e.g., program manager and/or systems engineer) who

coordinates and integrates programmatics (e.g., schedules, metrics) and deliverables (e.g., code)?

 Is there a clear owner of the program (or broader enterprise) architecture?

 Is there a clear, early commitment from user representatives and the broader user base?

 Are users co-located with, or within close proximity to the program office and/or contractor?

 How frequently do users meet (face-to-face, phone, VTC) with the PMO and developers?

 Is the product owner empowered to speak on behalf of the user community?

 Does the effort actively engage a collaborative, cross-functional community of stakeholders?

 Is the team size small enough to effectively adopt Agile principles?

 Are the number of teams manageable per the size, risk, complexity, and integration required?

 Is there a system-of-systems, scrum-of-scrums, or related cross-team integration role?

 Have approval authorities been delegated to a low enough level to enable rapid decisions?

 Do teams comprise both government representatives and developers?

 Do the team members have sufficient Agile experience, training, and/or coaches?

 Do external stakeholders understand and support their roles in an Agile environment?

See also: Roles in Disciplined Agile Delivery by Scott Ambler

http://disciplinedagiledelivery.wordpress.com/2012/12/18/roles-in-disciplined-agile-delivery/

15

6 Tailoring Program Structure and Processes for Agile Development

The Agile methodology focuses on assembling the right set of experts to plan, develop, and iterate

products regularly, rather than on gate reviews and extensive upfront documentation. Programs using

an Agile development methodology can tailor the acquisition framework in the DoDI 5000.02 and the

Business Capability Lifecycle (BCL) to deliver IT capabilities on a regular basis. In the early stages,

programs can still hold to a Materiel Development Decision (MDD), Milestones A and B, and the material

solutions analysis and technology development phases. The key is to reach a Milestone B quickly –

ideally within 18 months. Programs can accomplish this if PEOs and related portfolio managers can instill

common processes, platforms, and documents that individual programs can leverage to meet the DoDI

5000.02 requirements.

Figure 8 provides a potential framework that adapts Models 2, 3, and Hybrid B from the Interim DoDI

5000.02 for an Agile program acquisition.

Figure 8: Potential Agile Development Model

The way a program is structured into releases and sprints from the start can play a key role in its success

over the lifecycle. Program managers must determine the optimal timelines for releases and sprints on

the basis of various constraints, risks, and factors. The primary drivers include how frequently the

operational community wants and can integrate new releases, and the ability of the development

environment to regularly build, integrate, test, and deploy capabilities. Acquisition, contracting, budget,

test, and related processes constrain development, but PEOs should tailor these processes to support

smaller, more frequent releases. Active stakeholder engagement and contributions can aid the PEO in

designing the acquisition and development processes to fit the planned structure.

16

While the Agile culture supports changes and continuous process improvement, the program should

quickly establish a regular battle rhythm of time-boxed releases and sprints. Releases constitute the

foundational structure for deploying useful military capabilities to the operational community. This

guide recommends that DoD programs consider six months as the release timeframe. Many private

sector companies using Agile techniques deploy capabilities every month, but that cycle is likely too

short for the DoD environment. Conversely, some programs may need to structure themselves around

12–18 month releases due to various constraints. While Moore’s Law often drives an 18-month

schedule, that still represents a significant improvement over five-year increments that end up

averaging 81 months for large DoD IT programs.1 The key is to dismiss misconceptions about what the

acquisition process can allow and challenge the art of the possible.

Within a sprint (e.g., one month), the development team designs, develops, integrates, and tests the

software to enable the user stories selected. A guiding principle is to involve stakeholders early and

often to examine features, identify issues, and respond to changes. Engaging testers and certifiers early

in the release development process reduces the need for rigorous and lengthy operational test and

evaluation and certification processes following development. Ideally, developers deliver the interim

capability to the government at the end of each sprint so that testers, certifiers, and users can perform a

more thorough evaluation. The testers, certifiers, users, and stakeholders then give feedback to the

development team, and the product owner makes official changes to the program backlog. The product

owner also grooms the release backlog prior to the next sprint planning session to ensure that

successive sprints address identified issues (e.g., operational test, information assurance) and avoid

deferring them until the end. At the completion of each sprint, the development team holds a sprint

review to identify what did and did not succeed in that sprint so that the team can continually improve

its operations going forward.

Programs should base the length of each release and its sprints on operational and programmatic

constraints, risks, and objectives. The figures below show potential ways to structure releases and

sprints for a government program. Figure 9 shows a six-month release that could include five

monthly sprints followed by a month for final testing and certification.

 Figure 9: Potential Six-Month Release Structure

1
 Defense Science Board Report on IT Acquisition, Mar 2009

17

An alternative structure (

Figure 10) is to construct a 12-month release composed of seven sprints, each taking six weeks, followed

by a six-week block for final testing and certification. Programs could also establish 11 month-long

sprints in a year.

Figure 10: Potential 12-Month Release Structure

Regardless of the structure used, developers must keep in mind that release scope, not dates, is

variable, while sprint scope is locked. All development teams should work to the same release and sprint

structure to manage scope, schedules, and dependencies. As more programs adopt Agile practices,

future programs can leverage an increased knowledge base of best practices and lessons learned.

The government will also need more dynamic, innovative strategies that comply with policies and laws.

Within the DoD, the Defense Acquisition Framework (to include BCL) and the Joint Capability Integration

and Development System (JCIDS) are two key elements that guide program structure. Both have made

progress in enabling more Agile approaches, with JCIDS adopting an IT Box model for IT programs and

OSD/AT&L leadership advocating that program managers “design alternative program structures rather

than default to the ‘school solution’.”2

Key Questions for Structuring Sprints and Releases:

 Does the team hold planning sessions before each sprint?

 Does each release and sprint have a defined schedule?

 Are sprint and release durations consistent (e.g., all sprints are one month long)?

 Are users actively engaged throughout the design, development, and testing process to provide

feedback for each sprint?

 Does the team hold sprint reviews to evaluate and refine processes and tools?

2
 Frank Kendall, Defense AT&L Magazine, “The Optimal Program Structure,” August 2012

http://mitrepedia.mitre.org/index.php?title=Defense_Acquisition_Framework&action=edit&redlink=1
http://mitrepedia.mitre.org/index.php?title=Joint_Capability%C2%A0Integration_and_Development_System&action=edit&redlink=1
http://mitrepedia.mitre.org/index.php?title=Joint_Capability%C2%A0Integration_and_Development_System&action=edit&redlink=1
http://www.dau.mil/pubscats/ATL%20Docs/Jul_Aug_2012/Kendall.pdf

18

7 Planning

In an Agile environment, continuous

planning occurs at every level – from

the program to each release and sprint

– and incorporates feedback

mechanisms to inform planning for

future releases and sprints. The full

team and key stakeholders execute the

process collaboratively and iteratively. Program teams should work closely with enterprise architects to

plan how their efforts fit within the broader enterprise (see section 9.2). As the participants begin to

understand program requirements, structure, and solution space, planning should focus strongly on the

near term. Programs should review and approve plans at the lowest possible level to support rapid

timelines.

While traditional acquisition programs for large weapon systems develop detailed acquisition

documents, designs, and strategies that span more than a decade, IT programs have a much shorter and

more fluid lifespan. Agile programs can establish some high-level planning, requirements, processes, and

structure; however, activities focus on what teams can develop and field in the next few releases. Small,

frequent releases enable rapid adaptation of plans, requirements, processes, and capabilities. As noted

previously, programs should attempt to begin development within 18 months of the program start.

Agile requires upfront planning to streamline processes to enable rapid and frequent delivery of

capabilities. Simply trying to execute traditional processes faster or to cut corners does not equate to an

Agile methodology. Program managers must consider different approaches to many of the acquisition

processes to truly embrace the speed of Agile development. A portfolio-based approach can allow

programs to take advantage of efficiencies gained across several Agile development efforts. For

example, competing and negotiating contracts at the portfolio-level can streamline the contracting

processes for individual programs and allow them to take advantage of release-level task orders.

Additionally, programs should negotiate streamlined testing and certification processes at the portfolio

level to drive commonality and repeatable processes. Programs adopting Agile should establish or

leverage capstone -level documents as part of their initial program planning.

In Agile programs, planning occurs at both the release and sprint levels. Release planning identifies the

capabilities that will be developed over a series of sprints for delivery at the end of the release period

(e.g., six months). During release planning, the release team establishes release dates, scope, number of

sprints, number of teams, and allocation of user stories to teams. Release planning activities also track

risks and manage inter-team dependencies if using a multi-team approach.

Going into release planning, the release team and development team have a program backlog of

prioritized user stories. The team goes through the initial exercise of estimating complexity or size of the

top features to assist in scoping the release outcome (see release-level estimating section 11.2.2 for

further information). The team also defines the criteria for determining that a user story is done. The

release planning sessions should result in a full understanding and agreement by all stakeholders and

19

sprint teams as to what will be delivered, when it will be delivered, and which team (if the project

involves a multi-team approach) is responsible for each requirement/user story.

Sprint planning follows release planning. Sprint planning occurs prior to each sprint to confirm

understanding and completeness of the user stories, and add detail to user stories by decomposing

them into tasks. The development team usually assigns a time estimate to tasks, typically in hours, with

a goal of keeping tasks under one day. These refined task estimates, in combination with the team’s

actual velocity, generate a higher degree of certainty of the team’s capacity for delivery. The sprint

planning session produces a sprint backlog that defines the set of user stories each sprint team has

committed to delivering.

Development teams often have planning sessions periodically throughout the releases and sprints. This

is where the team will review the user stories on the program, release, or sprint backlog to ensure a

common understanding of what is required, the definition of done, and refinement of the estimated

time to complete each story. This along with the product owner’s grooming of the backlogs based on

operational priorities will ensure the user stories are well understood and properly prioritized.

Key Questions to Validate Planning:

 Is sufficient time allocated to program/release/sprint planning?

 Does the full development team participate in the planning process?

 Are external dependencies identified, discussed, and documented during planning sessions?

 Has the team established a communication plan to coordinate across teams and externally?

 Does the plan align to existing enterprise architectures, frameworks, standards, or interfaces?

 Can the development team access architecture documents and systems?

 Are owners/representatives from these enterprise areas involved in the planning?

 Are assumptions, constraints, and rationale discussed and documented during planning?

 Has the team established standard time boxes for releases and sprints?

 Has the team clearly defined “done” for a release to be fielded (beyond specific content)?

 What methods are used during planning to decompose and translate requirements (e.g.,

storyboarding, prototyping, user shadowing, interviews, demonstrations, etc.)?

 Does the program have clear, agreed-upon expectations for the depth and breadth of

documentation?

 How much planning occurs in early phases and documents vice continually throughout the releases?

20

III. Agile Acquisition Processes

The following sections recommend strategies for implementing Agile within each acquisition discipline.

8 Requirements

The Agile methodology does not force programs to

establish their full scope, requirements, and design at the

start, but assumes that these will change over time. Even

so, the program must maintain a big picture, long-term

view and focus on the next six-month release. All

participants must recognize how the program fits within

the enterprise architecture from both a business and

technical perspective, and have a foundational

understanding of the desired operational capabilities and

technical infrastructure required.

8.1 Documentation

The government can develop capstone documents at the larger system or portfolio level to capture

processes and overarching strategies. As illustrated in Figure 11, programs adopting Agile can establish

or leverage such capstone-level documents as part of the initial program planning. Each development

effort could either point to those documents or quickly create an appendix to capture details unique to

that program. Because Agile embraces continuous process improvement, the government should

update capstone documents to reflect any changes to strategies or processes.

The Agile manifesto emphasizes “working software over comprehensive documentation.” Plans should

be developed by the team, for the team, to provide some level of consistency and rigor, but the level of

documentation should not impede the team’s ability to focus on capability delivery.

Figure 11 Capstone Documentation Example

Appendix D lists required DoDI 5000.02 and BCL acquisition documents, and contains a table that

identifies the applicability of each acquisition document and how it can be streamlined or combined

with other documentation at the portfolio-level. Programs must address requirements for Agile in the

21

context of both the DoD requirements process under JCIDS and the user story management process

within Agile.

8.1.1 IT Box

The Joint Requirements Oversight Council (JROC) published an update to the JCIDS Manual on 19 Jan 12

that includes an IT Box model for Information Systems (IS). The policy applies to programs with software

costs over $15M and with COTS or Government off-the-Shelf (GOTS) hardware installation or technology

refresh. It does not apply to business systems or IS embedded in weapon systems.

Acquisition programs must have an IS Initial Capabilities Document (ICD) for JROC approval, while the

traditional Capability Development Documents (CDDs) and Capability Production Documents (CPDs) are

no longer required. As illustrated in Figure 12, the four sides of the IT Box identified in the IS-ICD

include:

Figure 12 IT Box (Source JCIDS Manual 19 Jan 12)

As long as the program operates within these four sides of the IT Box, they need not return to the JROC

for approval or oversight. In lieu of CDDs and CPDs, programs can develop Requirements Definition

Packages (RDPs) to capture a subset of the IS ICD scope and/or Capability Drop (CD) documents for

smaller items such as applications (see Figure 13). Services and requirements oversight organizations

have the flexibility to identify alternative names for these documents, along with their scope, content,

and approval processes. Most important, the requirements documents are designed for a smaller scope

of work and approval at a lower level. This flexibility and streamlining of IT requirements enables Agile

development within a DoD program. Programs should take advantage of this flexibility and avoid

developing a CDD or CPD. Managers can formulate the requirements process for the overarching

acquisition using the JCIDS IT Box process to build in flexibility from a high-level operational standpoint.

Once an Agile approach has been designed into the program, the process for managing requirements

from a functional capability standpoint must also be flexible.

https://acc.dau.mil/adl/en-US/267116/file/41245/JCIDS%20Manual%20-%2019%20Jan%202012.pdf

22

Figure 13: Example of Requirements Documentation (Data Source: JCIDS Manual)

8.1.2 Aligning IT Box Requirements to Agile Development

The IS ICD provides an initial requirements scope for a program, system, or portfolio at the MDD. From

the IS ICD, a program develops RDPs that identify the subset of the IS ICD scope that can be chunked

into releases. As illustrated in Figure 14, each RDP captures a set of requirements prioritized for a

release. A CD captures the release backlog requirements allocated to a sprint and forms the basis for a

sprint backlog.

Figure 14: Mapping IT Box Terms to Agile Structure

8.2 Backlogs

As noted in section 2, requirements in an Agile environment are usually managed via program, release,

and sprint backlogs rather than through formal requirements documents. Backlogs could take the form

of databases, Excel spreadsheets, or Agile-based software tools. The product owner actively manages

(grooms) program and release backlogs, working with the user community and other stakeholders to

identify the greatest level of detail for the highest priority requirements.

23

Figure 15 shows the relationships among the program, release, and sprint backlogs. The program

backlog contains all desired functionality and requirements. A release backlog typically comprises the

highest priority requirements from a program backlog that a team can complete within the established

timeframe. A sprint consists of the highest priority requirements from the release backlog. Once the

development team commits to the scope of work for a sprint, that scope is locked. Sprint

demonstrations conducted by the contractor at the end of a sprint may identify new features or defects

that the team would add to the release or program backlogs.

Figure 15 Program, Release, and Sprint Backlogs

The product owner, actively collaborating with users and stakeholders, is responsible for grooming the

backlog to ensure the content and priorities remain current as teams receive feedback and learn more

from developments and external factors. Users and development teams may add requirements to the

program or release backlog or shift requirements between them. The release and development teams

advise the product owner on the development impacts of these decisions, while users advise the release

team about the operational priorities and impacts. To address a specific user story the dependencies on

existing or planned capabilities must be understood. Some programs may use a Change Control Board

for some of the larger backlog grooming decisions.

In an Agile environment, users often translate requirements into epics and user stories to concisely

define the desired system functions and provide the foundation for Agile estimation and planning. They

describe what the users want to accomplish with the resulting system. User stories help ensure that

users, acquirers, developers, testers, and other stakeholders have a clear and agreed-upon

understanding of the desired functions. They offer a far more dynamic approach to managing

requirements than large requirements documents. Development teams periodically review the stories

on the backlog to ensure the fidelity of details and estimates. Engineers may also write user stories to

cover underlying characteristics of security, technical performance, or quality. Interfaces with other

systems are usually captured as user stories.

User stories require little maintenance; they can be written on something as simple as an index card. A

common format for a user story is:

"As a [user role], I want to [goal], so I can [reason].

24

For example, “As a registered user, I want to log in so I can access subscriber-only content.” User stories

should have the following characteristics:

 Concise, written descriptions of a capability valuable to a user

 High-level description of features

 Written in user language, not technical jargon

 Provide information to help teams estimate level of effort

 Worded to enable a testable result

 Traceable to overarching mission threads

Each user story should be associated with defined acceptance criteria to confirm when the story is

completed and working as intended. This requires the stakeholders to have a clear “definition of done”

to ensure common expectations. Acceptance criteria consist of a set of pass fail statements that specify

the functional requirements. Defining acceptance testing during the planning stages enables developers

to test interim capabilities frequently and rework them until they achieve the desired result. This

approach also streamlines independent testing following development of a release.

The development team, users, and other stakeholders may use storyboards and mockups to help

visualize the system use and features.

Teams update the backlogs based on what the users and developers learn from demonstrated and

fielded capabilities. The new items may include making fixes to software or generating new ideas. As

operations change, teams may propose adding or changing requirements and user stories, both in

content and priority. For example, the team may add integration items to the backlog as the program

interfaces with other systems. Systems engineers and enterprise architects may add items that support

the release integrity or technical underpinnings of capability delivery and information assurance. Ideally,

teams should address issues discovered by government and contractor testers within the next a sprint

or release, but they may add those issues to a backlog based on the scope of the fix.

8.3 Active User Involvement Throughout the Development Process

A close partnership between users and materiel developers is critical to the success of defense

acquisition programs and is a key tenet of Agile. Users must be actively involved throughout the

25

development process to ensure a mutual understanding across the acquisition and user communities.

While users will often have operational responsibilities of their day job, the more actively they engage

during development, the better chances for success. There needs to be a commitment from operational

commanders to allocate time for users to engage. Users share the vision and details of the concepts of

operations (CONOPS) and the desired effects of the intended capabilities. Through ongoing discussions,

the program office and developers gain a better understanding of the operational environment, identify

alternatives, and explore solutions. Users then describe and validate the requirements, user stories, and

acceptance criteria. The program office must make certain that the requirements can be put on contract

and are affordable based on funding, schedule, and technological constraints. Testers should take an

active part in these discussions as well to ensure common expectations and tests of performance. In

situations where primary users are not available to engage with the Agile team on a regular, ongoing

basis, the end users can designate representatives to speak on behalf of the primary users.

8.3.1 User Forums

User forums enhance collaboration and ensure that all stakeholders understand and agree on the

priorities and objectives of the program. They can serve as a valuable mechanism for gathering the full

community of stakeholders and fostering collaboration. They give users an opportunity to familiarize

developers with their operational requirements and CONOPS and to communicate their expectations for

how the system would support their needs. Continuous engagement of users, developers, acquirers,

testers, and the many other stakeholders at these forums also enables responsive updates and a

consistent understanding of the program definition.

Suggestions for successful user forums include:

 Hold regularly scheduled user forums and fund travel by stakeholders across the user

community; alternatively, or in addition, provide for virtual participation.

 Arrange for developers to demonstrate existing capabilities, prototypes, and emerging

technologies. These demonstrations give users invaluable insight into the art of the possible and

the capabilities currently available. User feedback, in turn, guides developers and acquirers in

shaping the program and R&D investments.

 Allow the full community to contribute to the program’s future by holding discussions on the

strategic vision, program status, issues, and industry trends. Program managers should not rely

on one-way presentations.

 Give stakeholders the opportunity to convey expectations and obtain informed feedback.

 Establish working groups that meet regularly to tackle user-generated actions.

 Hold training sessions and provide educational opportunities for stakeholders.

26

Key Questions to Validate Requirements Management:

 What requirements documents does the program have?

 Who is responsible for managing the program backlog?

 What is the process for adding, editing, and prioritizing elements on the backlog?

 How are requirements translated into user stories, tasks, acceptance criteria, and test cases?

 Are there clear “definitions of done” that the team and stakeholders agree upon?

 Are developers involved in scoping the next sprint (or equivalent)?

 Does the backlog include technical requirements from systems engineers, developers, and testers

along with the user requirements?

 What requirements oversight board exists and what does it review/approve?

 How frequently are the backlogs groomed?

 Is there an established change control process for the requirements backlog?

 Are architecture or system-of-systems requirements managed on the backlog?

 Are requirements/user stories/backlogs maintained in a central repository accessible by a broad

user base, and is content shared at user forums?

 Does the product owner regularly communicate with the development team about the CONOPS?

 Are testers actively involved in the requirements process to ensure requirements are testable?

 Is there a mapping among requirements, user stories, tasks, and related items?

 Is there a mapping between release/sprint requirements and higher level program/enterprise

requirements?

 Does the program have a dynamic process to regularly update, refine, and reprioritize

requirements?

 Does each release and sprint have a defined schedule?

 Does each requirement/user story planned for the release/sprint have associated cost and

acceptance/performance criteria?

 Are users actively engaged throughout the design, development, and testing process to provide

feedback for each sprint?

 Is integration with lifecycle support processes and tools iteratively refined and evaluated as part of

each sprint?

See also:

 Agile Requirements Best Practices by Scott Ambler

 Requirements by Collaboration by Ellen Gottesdiener (See also the book by same name)

 Agile Requirements Modeling by Scott Ambler

 Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the

Enterprise by Dean Leffingwell

 Writing Effective Use Cases by Alistair Cockburn

 Articles on Agile Requirements

 Articles on User Stories

http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm
http://www.busanalysiselearning.com/Pubs/Articles/ReqtsByCollab-Gottesdiener.pdf
http://www.amazon.com/Requirements-Collaboration-Workshops-Defining-Needs/dp/0201786060
http://www.agilemodeling.com/essays/agileRequirements.htm
http://www.amazon.com/Agile-Software-Requirements-Enterprise-Development/dp/0321635841/ref=pd_sim_sbs_b_1
http://www.amazon.com/Agile-Software-Requirements-Enterprise-Development/dp/0321635841/ref=pd_sim_sbs_b_1
http://www.amazon.com/Writing-Effective-Cases-Alistair-Cockburn/dp/0201702258/ref=pd_rhf_dp_s_cp_2_P4EA?ie=UTF8&refRID=1TECKSNQ9AZ1QZ0G230S
http://cf.agilealliance.org/articles/article_list.cfm?CategoryID=14
http://cf.agilealliance.org/articles/article_list.cfm?CategoryID=52

27

9 Systems Engineering

9.1 Overview

“Systems engineering establishes the technical framework

for delivering materiel capabilities to the warfighter.”

–Defense Acquisition Guidebook

Systems engineering ensures the effective development and delivery of capabilities by using a set of

integrated, disciplined, and consistent processes throughout the program lifecycle. In an Agile

environment, systems engineering requires tailored methods and processes to deliver incremental

capabilities, and therefore demands a disciplined approach to coordinating parallel development,

operations, and sustainment activities. Systems engineers play an essential role in technical and

programmatic integration, as expressed in the core Agile tenet of active collaboration among

developers, users, and other stakeholders. Program leaders must encourage systems engineers to

engage developers, testers, users, and other stakeholders in their disciplined engineering processes.

To enable faster, smaller capability deliveries, Agile development requires tight integration among

enterprise architectures, platform architectures, and related development efforts. To find the right

balance between structure and the flexibility necessary to deliver usable capability aligned with user

needs, programs should conduct continuous systems engineering reviews in accordance with DoDI

5000.02 requirements. However, as illustrated in Figure 16 programs should replace comprehensive

Preliminary Design Reviews (PDRs) and Critical Design Reviews (CDRs) with more frequent and

incremental design reviews during the release planning phases. To demonstrate functionality and

provide insight into the program’s progress, these reviews should focus on the relatively small scope of a

release and how it aligns to the enterprise architecture. Similar technical reviews can be decomposed to

the release level.

Figure 16: Transitioning Large Formal Technical Reviews to Smaller, More Frequent, Iterative Reviews

https://acc.dau.mil/CommunityBrowser.aspx?id=638297

28

While Agile systems engineering involves frequent informal technical and programmatic reviews, this

less formal approach does not equate to less rigor. Instead, greater frequency allows key decision

makers and other stakeholders to become more familiar and comfortable with processes in the Agile

environment, which enables a more collaborative and productive review process. As emphasized in the

sections above, full participation by key decision makers and users is fundamental to the Agile approach.

Some key systems engineering practices to consider in an Agile environment include:

 Provide information to all key stakeholders on a consistent, regularly scheduled basis, either

through design reviews or program reviews.

 Use the release planning and sprint demonstrations as opportunities to bring users, developers,

and stakeholders together in face-to-face sessions to drive collaboration and strengthen

teaming arrangements.

 Ensure that once a clear architecture is in place, systems engineers continue to refine it as they

learn more from the development sprints and releases.

 Independent of releases, hold periodic technical reviews for larger epics, strategic planning,

grooming the program backlog, managing resources, and shaping the program’s direction.

 Capture systems engineering processes and related content in portfolio-level systems

engineering plans for broad use. Individual releases can capture the scope details in small

appendices approved at a low level.

9.2 Enterprise Architecture

The Enterprise Architecture is the explicit description of the

current and desired relationships among business and

management process and IT. It describes the "target" situation

which the agency wishes to create and maintain by managing its

IT portfolio.

- Franklin D. Raines, Former OMB Director

In today’s environment, IT programs can no longer operate independently; instead, they must interface

and communicate with many other systems across the DoD. As the DoD continues to evolve to a

common operating environment with enterprise platforms, IT programs will deliver capabilities via a

series of applications or web services. IT systems must therefore be designed, developed, and

maintained in concert with enterprise architectures. The enterprise architecture is central to

orchestrating technical integration in today’s environment and envisioning how a system should

operate in the future. The architecture should highlight both the technical and operational processes

and structure across the enterprise. The architecture should take both existing and planned

infrastructure and systems into account – from the capabilities they currently provide, to the gaps that

must be filled and the required interfaces to other systems. The architecture can also promote the use

of open source software and reuse of existing code or applications.

http://www.whitehouse.gov/omb/memoranda_m97-16
http://en.wikipedia.org/wiki/Open-source_software

29

Throughout the IT acquisition lifecycle, the enterprise architects serve as essential members of the

program team, helping to effectively scope, structure, and analyze alternatives for delivering capabilities

to the warfighter. They ensure the architecture captures the operational and technology environments

as well as current processes, components, interfaces, and other features. An effective architecture is

one where the big picture is clearly understood and stakeholders understand how they connect to the

enterprise. As the entire program team learns how the required capabilities will achieve military

objectives, the team members must also understand how the program will align with existing and

planned efforts across the enterprise, and must provide the architects with updates to the program so

they can continually manage and update the architecture. Enterprise architects must ensure that the

program effectively digests and integrates additions to the architecture and archives expired elements.

Frequent collaboration is critical to success.

When the program develops new software – for instance a new application, or customization of an

existing COTS product – it must establish an initial architecture to guide the design and integration

aspects of the project. The architecture will help to identify how to prioritize the requirements to deliver

initial functionality. The initial design of the architecture and platform infrastructure is usually created

separately from the software development portion of the program that employs Agile. Under a Scrum

methodology, this upfront architecture and infrastructure design and build are referred to as “Sprint 0.”

Enterprise architectures capture vast amounts of information; however, the key guideline in developing

and maintaining architectures in an Agile environment is to keep it simple. The value of the architecture

decreases as complexity increases, with volumes of documents and artifacts making it difficult for

participants to comprehend.

Interfaces with external systems and changes driven by the enterprise architecture are often managed

as stories on the program backlog. Many interfaces must be broken up into many stories, but be

managed as a theme or epic. Experts in Agile methods recommend use of common (ideally open

sourced) platforms, standards, interfaces, and application program interfaces (APIs) over costly point-to-

point interfaces.

See also:

 Agile Enterprise Architecture

9.3 Continuous Prototyping

“I have not failed. I have successfully discovered 10,000 ways

to NOT make a light bulb.” – Thomas Edison

Prototyping plays an essential role in developing tangible,

deployable, valuable functionality, but also has other uses.

Real innovation always includes a risk of failure, and

continuous prototyping gives program managers and users a powerful resource to reduce risk, quickly

integrate new technologies, and identify innovative solutions that leverage existing programs, GOTS,

http://www.agiledata.org/essays/enterpriseArchitecture.html

30

and COTS products. For example, the objective of creating a prototype might be to assess whether a

COTS product can perform a particular function. In other cases, a prototype can evolve into the final

product or be used in a future release.

Prototypes can enable the government to quickly eliminate ineffective approaches and focus on

effective ones. They also provide a way to demonstrate functionality to help solidify requirements for

the final design. An ongoing technology demonstration capability creates an environment for

prototyping several different implementations of a design feature to benchmark the resulting

performance and analyze the tradeoffs of each approach. This can reduce risk, drive better design

decisions, and save time during the development process.

The nature of Agile development involves continuously refining capabilities by adding to previous work

or refactoring (cleaning up code) when necessary to meet these changing priorities. Teams can

reprioritize requirements on the basis of the information learned during prototyping activities.

Some prototyping practices to consider in an Agile environment are:

 Institute rapid prototyping that allows developers and government R&D organizations to quickly

demonstrate potential solutions that meet urgent requirements, mature and integrate

technologies for the particular solution space, and highlight advantages over alternative options.

 Establish an environment that includes processes and properly configured DoD test platforms to

rapidly prototype capabilities that extend beyond the next increment or project. This opens up

opportunities for innovative and dynamic solutions. This type of continuous prototyping

environment can be supported by a portfolio-level multiple award Indefinite Delivery Indefinite

Quantity (IDIQ) contract and can also provide opportunities for innovative small businesses to

enter the DoD market.

9.4 Risk Management

Risk management is integral to effective program management and systems engineering in Agile and

traditional programs. Programs adopting Agile practices will generally manage risk like traditional DoD

programs, but will face different levels and sources of risk. They will still require a rigorous process to

regularly identify, assess, mitigate, and track risks. Risks will need to be actively managed with

mitigation strategies integrated into acquisition strategies and key program processes throughout the

program lifecycle. Agile enables some unique risk management aspects and mitigations.

Within an Agile environment, managing risk is an integral part of release/sprint planning and

development. The Agile process itself has built many features into the development process to manage

risk; for example, decomposing development into small releases and sprints usually reduces both

program cost and schedule risks. Estimates for smaller efforts (e.g., six-month releases) tend to have a

higher fidelity than those for entire programs or increments (e.g., 5–10 years), and over time the

estimates improve as sprints and releases provide valuable data. Frequent software deliveries of priority

user capabilities and responsiveness to changes often mitigate the risk of user dissatisfaction. Using

mature technology and designs in shorter releases and sprints helps to manage technical risks. Program

31

failures in releases and sprints are smaller and therefore have less overall impact; they also provide

valuable lessons for future developments.

Agile development reduces overall program risk because the program regularly delivers some degree of

useful capability in each release. Thus, even if a program’s budget is cut or eliminated along the way,

deployed releases provide users with some level of fielded capability. Furthermore, Agile development

focuses on users’ highest priority capabilities first; as a result, users need not wait five to ten years to

receive critical capabilities. Capability demonstrations to users at the end of each sprint reduce the risk

that the final product will fail to meet user’s expectations, since users can provide ongoing feedback on

deployed capabilities to inform and shape future releases. Lastly, short development timelines provide a

steady pipeline to infuse mature technologies effectively integrated into the system and enterprise.

An Agile environment does not reduce all risks, as coordinating and integrating many smaller

developments involves increased complexity. Similarly as more development teams are involved,

possibly including multiple contractors, integration risks increase. Success depends on an effective

program manager and chief engineer, working with enterprise architects and stakeholders, who can

effectively design and implement solutions.

Programs also run risks when transitioning and adapting to an Agile culture. During the early adoption

period it is especially critical to have personnel with Agile experience in the program office and

contractor teams. Agile coaches can also provide guidance to assist programs in tailoring and executing

Agile roles, processes, and environments.

A key development risk can occur if requirements are continuously deferred to future sprints or

releases. Often the developers find that they cannot meet all of the requirements in a sprint, thus

requirements continue to shift to the right creating a bow wave effect. One way to manage this

requirements shift is to make the 4th or 5th sprint in each release a “catch up” sprint with no new

requirements in it. This keeps the program’s schedule and cost on track.

A final key risk to consider is the User community’s ability to handle the planned releases. When

defining the release schedule for a program, one must consider the users’ ability to integrate releases in

their operational environment. Part of what will dictate this is how much change is visible to the user

community and how much they must change their way of doing business. Training and documentation

are often highlighted as constraints, but there are strategies for smoother integration. There may be

some established periods where the operational community cannot integrate new releases.

9.5 Configuration Management (CM)

The many smaller developments and flexible requirements process that characterize Agile programs

make CM an important and challenging practice in Agile environments. CM starts with mapping and

managing requirements via backlogs, stories, epics, and themes to the sprints, releases, and acceptance

criteria. As backlogs are regularly groomed, the product owner must ensure traceability of changes and

from requirements to user stories to delivered capabilities. Regular code check-ins, integration, and

builds can occur on a daily basis. Frequent code updates and automated testing create a high demand

32

for managing the complexity of version control. If issues arise, the team can revert to earlier versions

and identify the steps that must be re-accomplished. Leveraging common standards and interfaces

enables the development teams to work more independently to reduce integration risks.

Many Agile development and engineering tools have CM functionality. These tools are invaluable for

integration across multiple development teams on the program and with external systems. As with CM

on traditional programs, there needs to be rigor on managing changes to baselines, designs,

engineering, and program documentation. Some additional CM methods for Agile include:

 Assign the daily management of configuration items to the Agile team, while a Configuration

Manager focuses on program/enterprise-level activities such as creating a CM strategy and

tools.

 Use automated tools to enable continuous integration, reduce delays in integration and testing,

and provide CM functionality.

 Continuously observe and adapt the CM tools and process. For example, avoid complex

branching or baselining mechanisms if the team does not need them, or observe where long

build times slow down the team and focus on improving these procedures.

9.6 Technical Debt

Technical debt is often a term used in the Agile community to describe the eventual consequences of

deferring complexity or implementing incomplete changes. As a development team progresses through

sprints and releases, there may be additional coordinated work that must be addressed elsewhere in the

software code or documentation. When these changes do not get addressed within the immediate

sprint or release and get deferred for a later iteration, the program accumulates a debt that must be

paid at some point in the future. If the debt is not repaid, then it will keep on accumulating interest,

making it harder to implement changes later on and potentially misrepresenting the level of progress

the team has made on the development.

This technical debt can have significant impacts to the productivity and completeness of the software

releases. There are many causes of technical debt to include: poor/improper coding, changing

requirements, issues found during testing, inconsistent programming, lack of process rigor, hastiness to

demonstrate progress, and poor enterprise architectures. As the project proceeds, this work must be

addressed to avoid compounding issues associated with cost over runs, schedule delays, and product

quality. The scrum master and development team must balance completion of planned capabilities with

eliminating this technical debit. Addressing technical debt early may hurt short-term productivity, but

provides long-term benefits. Technical debt can be minimized with effective architectures and owners,

use of automated and regression testing, process disciplines in the development team’s coding

practices, business rules with the product owner on requirements, and incentives with the government.

Key Questions to Validate Systems Engineering Strategies:

 Does the program leverage existing hardware platforms?

33

 Does the design integrate mature technologies and align with enterprise architectures, standards,

and interfaces?

 How are team engineers collaborating with enterprise architectures to ensure program or enterprise

changes are understood, impacts assessed, and technical documentation kept current?

 Does the design anticipate technological evolution?

 Does the design consider mission assurance?

 Has the team conducted a sufficient systems engineering/cost tradeoff analysis?

 How frequently is code integrated and tested in the developer’s environment?

 Is all code reviewed by at least one other team member prior to system testing?

 How frequently are scope changes made within a sprint? What is the process to review/approve?

 Does the government have access or insight into the development environment (code, metrics)?

 At the end of a sprint, does the team reflect on what worked and how to improve in future sprints?

 How are development activities coordinated and integrated across releases?

 How are enterprise-level issues identified, managed, and resolved?

 How are program risks managed? Is there a central (single) risk repository? Do stakeholders have

access to this repository and can they contribute to it? How quickly are risk mitigations

implemented after being identified? How frequently are risks reassessed and reprioritized?

 Does the program have tools and processes in place to ensure rigorous configuration management

of requirements, code, technical designs, and baselines?

 What is the continuous improvement strategy?

See also: Agile architecture articles

10 Contracting

Contracting is a challenging, but critical, element in attaining the benefits of Agile practices. Long

contracting timelines and costly change requests have become major hurdles in executing Agile

developments and enabling small, frequent releases. Contracting strategies for Agile programs must be

designed to support the short development and delivery timelines that IT requires. Today, a full and

open competition for an IT contract can take as long as 12–18 months. Timelines such as these have

driven many IT programs to structure programs in large, five year increments, which in turn drive

significant program risk. Understanding the true schedule drivers, constraints, and regulations for the

contracting processes is critical to designing an optimal Agile program strategy.

The current contracting environment does not encourage Agile approaches.

Table 3 identifies some of the key contracting areas where traditional contracting practices do not align

to Agile contracting needs.

Table 3 Current Contracting Environment Vs Agile Contracting Needs

Current Contracting Environment Contracting Area Agile Contracting Needs

http://cf.agilealliance.org/articles/article_list.cfm?CategoryID=24

34

Long contracting timelines often
becomes the driver for program

execution
Timelines

Contracting is executed to support
short development and delivery

timelines

The functional requirements are locked-
in at contract award; changes often

require costly contract modifications
Scope

Contracts allow the program to
refine Agile requirements

throughout the development
process

The contractor executes the technical
solution and reports progress to the

government

Government-
Contractor

Relationship

The government and contractor are
working together on the

development with daily interaction
and collaboration

Contracting support is often centralized
and unable to provide rapid turnaround

on contract actions
Contracting Support

Embedded contracting support that
can quickly and efficiently execute

contract actions

Offeror proposes the development
methodology and the contract is

awarded based on the strength of the
technical solution

Technical Evaluation

The government identifies the
development process and the
contract is awarded based on

strength of development team and
experience with Agile

10.1 Contracting Business Environment

Agile contracting processes must be deliberate and well executed to support regular program delivery

timelines. Contracting strategies, processes, and culture must create a business environment that

supports small, frequent releases and responds to change. The small, empowered teams central to Agile

call for a tight partnership between program managers, users, and contractors in the DoD environment.

The government contracting community serves as an invaluable linchpin to enable this relationship in a

collaborative, flexible business environment. Dedicated onsite contracting support enables this close

partnership with the program team. The program manager should work closely with the contracting

officer as a business partner to devise a contract strategy. The contracting officer works with the release

team to plan and manage upcoming contract actions, ensure compliance with contract requirements,

and manage contractor performance.

The government program office and the Agile contractor development team must have a strong

relationship characterized by daily interaction and frequent collaboration. In addition to executing the

day-to-day development tasks, the government relies on the expertise of the contractor development

team to help prioritize requirements, estimate future sprints and releases, and continuously evaluate

and improve deployed capabilities. The contracting officer needs to work with the program office to

foster this collaborative environment with the contractor.

10.2 Developing an Agile Contract Strategy

It’s essential that both the contracting officer and the program office understand the important

distinction between contract requirements and the functional requirements that are part of the Agile

development process. In many cases, the two types of requirements differ significantly. Contract

requirements are strictly limited to the tasks and activities the government requires a contractor to

35

perform, which in some cases have only a distant and indirect relationship to the requirements

managed and tracked in the product backlog. For example, the contract requirements for a services

contract may refer to the expertise required for the development team (e.g., 6 full-time-equivalent

software development staff) as opposed to the functional requirements that are expressed in user

stories (e.g., content search capability).

There is no single recommended contracting path or strategy for an Agile implementation, but

establishing an environment with contract flexibility is essential to success. Several factors drive the

choice of a particular contracting strategy. The program must understand the operational and

programmatic priorities, constraints, and considerations involved in Agile development to properly

develop a contract strategy. For example, deciding who is responsible for primary systems integration

will determine whether the government can pursue a services versus a completion or product-delivery

contract. A short development cycle often has more predictable requirements that may allow for a

fixed-price contract. Long development cycles involve greater unknowns and may require a more

flexible contract type. The political environment may favor a particular contract type or contract vehicle.

The program should work closely with the contracting officer to consider the following factors when

developing the contract strategy:

 Who is responsible for systems integration?

 What is the overall development timeline?

 What is the frequency of releases?

 Does the current political environment drive the use of a particular contract type or vehicle?

 What is the level of contracting support?

 Does the contracting office have standardized processes or is it willing to pursue them?

 Are government resources available to actively manage contractor support?

 Is the program considered high risk?

 What level of risk is the government willing to accept?

 What level of integration is required?

 What is the level of integration risk if multiple contractors conduct parallel developments?

 Did market research identify available qualified contractors with Agile and domain experience?

 Is an Agile process well defined or already in place within the government program office?

 Are other, similar programs currently using or thinking of pursuing Agile?

 Does the program have executive-level support for Agile development?

 Can the program leverage established contract vehicles - portfolio, enterprise, or external level?

10.3 Contract Vehicles

The government uses many types of contract vehicles. At a basic level, there are a single-award IDIQ

contracts (award to one vendor) and multiple award IDIQ contracts. Under a multiple-award contract,

several qualified vendors receive an IDIQ contract and all the contract awardees compete for each task

order – a practice known as fair opportunity. The government can issue orders faster under a single-

award IDIQ than under a multiple-award; however, a single award loses the benefits of continuous

competition and the ability to switch easily among contractors in cases of unsatisfactory performance.

36

Other contract vehicles include Blanket Purchase Agreements (BPAs) off an existing General Services

Administration (GSA) schedule contract (e.g., Schedule 70), Government-wide Acquisition Contracts

(GWACs) (e.g., GSA Alliant), and Agency-level multiple-award contracts (e.g., Encore II). The government

has already awarded such contracts, and makes them available for immediate use. However, these

contracts may have disadvantages such as limited selection of vendors with Agile experience, limitations

on contract types, and non-dedicated contracting support staff.

Establishing a contract vehicle up front at the PEO, portfolio, or enterprise level would enable many

programs to leverage the contract and the benefits of its streamlined processes, allowing them to

shorten contracting timelines and focus their strategy and energy on task orders. Programs that fall

under the portfolio could expedite the contracting process using task orders rather than individual

contracts.

Contract vehicles suitable for Agile development have pre-established contract pricing, terms and

conditions, and pre-vetted qualified vendor(s). This allows task orders to be issued in a matter of weeks

versus months. A portfolio-level contract vehicle can have a targeted scope that should attract the right

pool of vendors with Agile expertise in the technical domain. Programs can also use a portfolio contract

to streamline the process for meeting other needs, such as obtaining contractor support in the areas of

Agile subject matter expertise, independent testing, and continuous prototyping. However, these types

of contracts require that the program invest time and resources up front to compete and award the

umbrella contract vehicle.

When developing an IDIQ contract for Agile development, the program can consider a number of steps,

shown below, to streamline and improve the contracting and ordering processes.

 Engage users and testers in developing the contract scope, evaluation criteria, incentives, and

terms and conditions to ensure the contracting activity fully meets all needs and considerations.

 Develop templates and standard business processes to streamline ordering procedures and

ensure the quick execution of orders.

 Work with the contracting office to develop standard Performance Work Statement (PWS)

language and proposal evaluation criteria.

 Use past performance and relevant experience as source selection criteria for individual task

order awards to incentivize contractor performance.

 Understand the dedicated contracting process and associated timelines for executing task

orders. Program managers should become familiar with contracting documentation and

approval requirements.

10.3.1 Services Contracts

As noted, the Agile development process is characterized by constant change and reprioritization of

requirements. This makes it impractical to select an Agile development contractor using a contract type

that locks-in requirements up front and defines end-state products on a completion-basis. Traditional

development contracts often use a product-based firm fixed price (FFP) or cost-reimbursement

completion type of contract to hold the contractor accountable for delivery of a product or capability.

37

Under a product- based contract, the contractor proposes to the government a development

methodology and the government awards the contract based on the strength of the technical solution.

Any change to the original requirements can trigger a potentially expensive and time-consuming

engineering change proposal (ECP).

Alternatively, the government can consider using a services-based contract to obtain Agile development

support. Under this scenario, the government seeks the time and expertise of an Agile software

development contractor, rather than a software delivery end-product. The government chooses the

contractor on the basis of the strength and qualifications of the proposed development team rather

than the strength of the technical solution. However, as with any services-type contract, this creates a

risk because the contractor cannot be held accountable for delivering the end-product or capability. The

government can only hold the contractor accountable for providing the time and expertise agreed to in

the contract, but the government is ultimately responsible for managing the development process to

ensure product delivery. The daily interaction between the government and contractor that is

fundamental to an Agile development strategy should help to mitigate risks of non-delivery; the

government-led development team should be actively managing the development cycle and scaling-

back capabilities when needed to meet the time-boxed sprint and release schedule. On the other hand,

the team will need to carefully balance the need to meet schedule requirements with accumulating

technical debt as outlined in section 9.6.

In addition, when using a services-based contract, the government must assume the role of primary

systems integrator and have responsibility over the development process. An Agile development

support contractor can provide expertise and integration support to the government, but under a

services contract the government is ultimately responsible for delivery. The government must carefully

consider the implications of this important responsibility when deciding to adopt an Agile development

strategy.

Table 4 identifies some of the contract types available for a services-based contract strategy and the

advantages and disadvantages that the program office should weigh.

Table 4 Contract Type Comparisons for Services Contracts

Contract Type Pros Cons

Fixed-Price Services
Contract (either FFP, or
Fixed Price Level-of-
Effort)

 Generally preferred contract
type in DoD

 Easiest contract type to
manage

 Requires a deliverable for payment
(e.g., monthly report) unless
progress payments are authorized

 Cannot easily change labor mix and
number of hours without contract
modification

Cost Reimbursement
Term (Level of Effort)
Contract

 Provides flexibility to change
labor mix and hours as long as
it does not exceed contract
ceiling

 Does not require a deliverable
for payment

 Contract ceiling may be difficult to
establish based on Agile
requirements, which can affect
upfront fee determination

 The contractor’s cost accounting
system must comply with

38

Contract Type Pros Cons

acceptability standards

 Government must monitor the
contract for cost control assurance

 Less incentive for contractor to
control costs thus risk of a cost
growth that could exceed budget or
stakeholder commitments

Time-and-Material
(T&M) (Labor Hour)
Services Contract

 Provides flexibility to change
labor mix and hours as long as
it does not exceed contract
ceiling

 Does not require a deliverable
for payment

 Profit is built into the hourly
labor rate so it does not
require extensive upfront fee
negotiation

 Unpopular contract type across the
government

 Requires close government
monitoring

 Contractor is not incentivized to
control costs increasing the risk of a
cost growth that could exceed
budget or stakeholder commitments

The commercial sector often uses T&M contracts for Agile development, yet T&M is the least preferred

contract type in the government because the contractor is not necessarily incentivized to control costs.

Programs should consider this option if the government can manage the costs and scope on a proactive,

continuous, and frequent basis. At the beginning of a project – a stage with many unknowns – T&M can

provide maximum flexibility. Since the Agile development strategy requires daily interaction between

the government and contractor staffs, the controls needed to monitor contractor performance are

inherently built into the Agile development process and may provide the proper oversight to ensure

efficient delivery and effective cost control under a T&M arrangement. Structuring the program and task

orders into smaller, frequent releases (e.g., six months) limits the risks often associated with a T&M

contract because of the short period of performance and the “build to budget” development cycle. As

the project continues down the development path, and the team better understands the requirements

and establishes a rhythm, the contract type could shift to a fixed-price or cost-plus arrangement.

Often the political environment or the availability of a contract vehicle forces programs into a particular

contract type. If a T&M contract is not feasible or not preferred, a fixed price or cost reimbursement

term contract can also be considered. The program should work closely with the Agile cost estimators

and engineering team to assess the level of effort involved in establishing the ceiling price (or fixed

price) on the contract. This is especially important under a cost-plus-fixed-fee contract, where the fixed

fee is based on a percentage of the contract ceiling at the time of award. In addition, under a fixed price

contract, the government should establish deliverables (e.g., monthly report) to provide recurring

schedule payments.

39

Why Consider a Services Contract?

Traditional IT acquisition programs contract with a defense firm to deliver an end-product capability

based on a defined set of requirements. A services contract is based on the consistent delivery of

contractor labor hours vs. a defined product. By using a services-based contract in an Agile environment

the government can acquire the time and expertise of a contractor team of developers, testers,

integrators, database specialists, etc. If using an existing contract vehicle (preferably a portfolio-level

contract) the government can issue an order for each 6-month release based on the estimate of the

requirements captured in the product backlog. In the course of the release, the Agile requirements will

likely change based on reprioritization and changes in the development process. In contrast to a

traditional product- or completion-based contract, a services contract provides the flexibility to change

the release requirements continuously and still retain a consistent contractor team.

10.3.2 Product or Completion-Based Contracts

The government traditionally uses completion- or product-based contracts for IT acquisition, but these

are inappropriate for an Agile development. This type of contract requires upfront definition of

requirements so that the contractor can adequately estimate the effort involved and then prepare and

submit technical and cost proposals for the work. The nature of Agile would make it very difficult – if not

impossible – to identify requirements for an Agile development at the level of detail necessary for a cost

proposal estimate. In addition, under a product or completion-type contract, the government should

not be directing the contractor to use an Agile development methodology. The government should be

using a Statement of Objectives (SOO) to describe the overall objectives of the program (e.g., capability

delivery every 6 weeks) and let the contractor propose a development methodology that best meets the

objectives of the government. It will be harder to hold the contractor accountable for delivery if the

government is directing the contractor to use a specific development methodology.

If the program cannot use a services-type contract, one possible alternative would be to establish a new

IDIQ contract or use an existing contract vehicle and issue an order for each well-defined release or

sprint. However, sprints typically have very short timelines that make it impractical to issue a new order

for every 4-8 week sprint. Releases cover longer timelines, but do not have defined scopes and

requirements that would be required to use this type of contract. Using this type of vehicle effectively

would require significant coordination with the contracting office, as well as streamlined processes to

rapidly issue orders that keep pace with the Agile delivery cycle. This strategy would also require more

time and resources to award the initial umbrella contract vehicle and manage the contract and orders.

Under this type of arrangement, a cost-type completion contract would provide more flexibility than a

fixed-price product-based contract. A cost-reimbursement contract normally requires the contractor to

complete and deliver the specified end product (release or sprint) within the estimated cost, as a

condition for payment of the entire fixed fee. However, if the contractor cannot complete the work

within the estimated cost, the government may demand that the contractor expend more effort without

an increase in fee, but this would still involve an increase in the estimated cost.

40

Programs could also consider a fixed price incentive fee (FPIF) contract in this scenario. This type of

contract incentivizes the development contractor to deliver the release or sprint below the target cost

to obtain a higher fee according to the negotiated profit adjustment formula. DoD promotes the use of

FPIF contracts under Better Buying Power. This also requires the government to have a more in-depth

understanding of the requirements, development work required, and estimated costs to effectively

negotiate the fixed price. However, such contracts are more difficult to manage because the

government must negotiate the target cost, target profit, ceiling price, and project adjustment formula

with each order. Further, as is the case with any completion type contract, frequent changes and

reprioritization of requirements may significantly change the end product, driving the need for one or

more ECPs and contract modifications.

10.4 Contract Incentives

Under an Agile development, the team should be 100% focused on delivery and a speedy and efficient

contracting process needs to support short delivery cycles. As a result, the use of complicated contract

incentives (e.g., incentive fee, award fee) is not recommended when using a services-type contract for

Agile development. Contract incentives are time consuming and resource intensive to manage, and can

lead to a contentious working relationship between the government and contractor. Quick contract

turnaround and a close working relationship between the government and contractor is absolutely

critical under an Agile development; contract incentives can become a distraction to the program

impeding the delivery cycle.

Contract incentives are often used when the government does not have the capacity or control to

actively monitor contractor performance. However, under an Agile development, the government is

actively interacting with the contractor on a daily basis. The controls needed to manage contractor

performance are inherent to the Agile development process and additional incentives can be

burdensome and unnecessary. However, the program should still consider using a performance-based

contract when contracting for services. The program can issue a Performance Work Statement and use

past performance as an incentive, or use the metrics recommended in Section 12 of this guide to

manage contractor performance.

See also:

 OMB Contracting Guidance to Support Modular Development

 GAO Report 12-681 Effective Practices and Federal Challenges in Applying Agile Methods, July 2012

Key Questions to Validate Contract Strategies:

 Do the contract strategy and timelines support frequent capability releases?

 Is the program pursuing a services-based contract or completion/product delivery contract?

 Is the government the prime systems integrator?

 Does the program have dedicated contracting support?

 Is the contracting officer co-located with the program?

 Does the contracting environment support Agile development processes?

http://www.whitehouse.gov/sites/default/files/omb/procurement/guidance/modular-approaches-for-information-technology.pdf
http://www.gao.gov/products/GAO-12-681

41

 Do existing contract vehicles support Agile delivery?

 What is the level of engagement between the contracting officer and Agile team?

 How is the government monitoring the contractor’s performance?

11 Cost Estimation

Estimating costs in an Agile environment requires a more iterative, integrated, and collaborative

approach than in traditional acquisition programs. While a program can develop rough order of

magnitude estimates in the beginning, it cannot gain an understanding of costs and schedule with any

true fidelity until the development teams are in a rhythm.

Contrary to the myth that Agile is an undisciplined approach that downplays cost aspects, cost

estimation is a critical activity in programs that use Agile practices. However, cost estimation in an Agile

environment is challenging, especially for teams new to Agile processes. It consists of an ongoing “just in

time” program activity tightly integrated with the activities of the development team and engineers.

During the program execution phase, a high-level program estimate undergoes refinement to create

detailed release and sprint-level estimates as requirements become better defined. The fidelity of the

cost estimate increases once a development team is established to help estimate the level of work for

each requirement (i.e., as translated into user stories), and can further improve with subsequent

releases as the team captures performance productivity metrics for deployed releases. A comprehensive

and competent cost estimation process and methodology gives senior stakeholders the confidence to

relax rigorous oversight, and provides the program with valuable cost information to continuously

improve performance and management.

Traditional programs often treat cost analysis as a separate activity, rather than an integrated team

endeavor, but cost estimation on an Agile program is a team-based activity. Ideally, the government cost

estimator should be co-located with the systems engineers and development team as each Agile release

is scoped, developed, and tested. Ongoing collaboration among the users, development team, systems

engineers, cost estimators, and other stakeholders is critical to ensure agreement on requirements

prioritization in the product backlog, and to gain a thorough understanding of the amount of effort

required for each release. It also enables an integrated assessment of the operational and programmatic

risks, technical performance, cost drivers, affordability, and schedules.

11.1 Program Cost Estimate

Programs use cost estimates to create the spending plan during the acquisition phase. This spending

plan outlines how and at what rate the program will expend its funding over time. Because a reasonable

and supportable budget is essential to efficient and timely execution of a program, a competent cost

estimate creates the key foundation of a good budget.

Cost estimating techniques for an Agile development do not necessarily differ from the way estimates

are created for a traditional development program. Product size is usually the biggest cost factor when

developing a software cost estimate. Programs frequently estimate size based on source lines of code

(SLOC) or function points for traditional software developments. The government cost estimator should

42

work with the program staff and systems engineers to estimate the product size resulting from the

effort, drawing on technical baseline requirements for the IT system.

The government may need to consider some nuances of the Agile development process when

developing the program cost estimate. The impact of each cost factor listed below varies depending on

the Agile methodology employed, program structure, and unique attributes of the program.

 Program Management – Agile programs require intensive government participation and

involvement to manage the overall development process. The government program office must

closely engage on a daily basis with the contractor development team, and must enlist

dedicated support from additional government resources (e.g., cost estimators, testers, users,

contracting officer). In many cases, this may require an increase in government resources,

especially in the areas of program management, system engineering, and testing.

 Testing –The cost estimate for testing will have to consider the impact of the short, frequent,

integrated real-time testing characteristic of Agile developments, and determine if it differs

from the costs for a traditional waterfall testing approach. Additionally, the government must

evaluate the impact on regression testing.

 User Participation – User representation on the Agile release team is necessary to help prioritize

requirements, assist in creating user stories, conduct user acceptance testing, and report

feedback on deployed capabilities. The costs of maintaining continuous long-term user

representation on the Agile team should be factored into the cost estimate.

 Deployment – An Agile release deploys new capabilities every 6–12 months. The degree of

change and level of complexity of each release may require further consideration of deployment

costs. For example, additional end user engagement and training may be required with the

rollout of each release.

 Sustainment – As new capabilities are deployed, the program will have to operate and maintain

capabilities deployed from prior releases. The program must evaluate the cost impacts of

sustaining multiple, frequent, and overlapping releases.

11.2 Alignment to Budgets

The budget for an Agile development program is based on the government program cost estimate, given

the technical baseline requirements for the IT system. The program cost estimate must consider the

Agile development costs along with all the other costs to plan, manage, acquire, maintain, and dispose

of the program. One benefit of Agile is that once a budget has been established the program can be

structured to “build to budget.” The funding that the program receives then drives the number of

releases it can manage in a given year and the totality of delivered requirements within the entire

development period of performance. The challenge within DoD is often a resistance to allocate budget

for a program until all the requirements are fully defined and approved. There needs to be a clear

understanding of the level of requirements maturity required for budget authorizations.

Given the iterative, segmented nature of Agile development, Agile programs can scale up or down more

easily than traditional programs that deliver capability in 5–10 year increments. Even if the Agile

43

program experiences a major funding cut or cancellation during development, deployed releases will

already have provided capability to the user, which is not guaranteed under a traditional development.

As illustrated in Figure 17 under traditional waterfall development projects, scope and quality are fixed,

while schedule and cost vary and generally increase as requirements are further defined during the

project. Agile development projects attempt to fix schedule, cost, and quality while adjusting the scope

of specific releases to fit these constraints. The scope of each delivered release is defined by the

prioritization of requirements that deliver end-user functionality within the constraints of the cost,

schedule, and quality parameters. As a result, treating cost as an independent variable drives the

prioritization of requirements and facilitates release planning.

Figure 17: Differences In Traditional Waterfall vs. Agile Cost Variables

As noted, Agile programs can absorb budget cuts more easily than traditional acquisition programs. It is

easier to cut funding from an IT program that can easily defer a small release than to “break” a weapon

system increment or significantly delay delivery to the user. As a result, funding agencies often target IT

programs for budget cuts rather than weapon system programs that operate under inflexible CDDs. IT

programs that employ Agile techniques must ensure they have sufficient support at the Service/Agency,

OSD, and Joint Staff levels to avoid constant inroads on their funding.

Decomposing a software development project into several deployable releases enables projects using

Agile methods to adapt to both permanent reductions in the lifecycle budget and temporary reductions

in the development budget. Traditional, waterfall-based development projects find it far more difficult,

both technically and contractually, to accommodate changing budgetary conditions.

11.2.1 Independent Government Cost Estimates (IGCEs)

The IGCE is the government’s estimate of the resources and projected costs a contractor will incur in the

performance of a contract. The FAR requires a separate IGCE for every contract action, to include each

task and BPA order. The IGCE should include only those elements applicable to the contract

44

requirements, as outlined in the Statement of Work/SOO/PWS. The structure of the IGCE depends on

the type of contract pursued (e.g., services vs. delivery, term vs. completion, labor hours vs. deliverable).

For example, a services contract for Agile development support would require a cost estimate covering

the labor hours and labor categories of the Agile development staff; by contrast, a deliverables contract

may require a more complicated IGCE to estimate the costs of each requirement, feature, or

functionality.

11.2.2 Release-Level Estimation

Following contract award, the government can work with the contractor to execute the Agile

development process. The program should continue ongoing, concurrent cost estimation activities. This

facilitates the Agile planning process for future iterations, and provides management with forecasting

and performance data to reduce the need for formal reviews.

Agile developments typically use cost estimating strategies based on relative measures of size, such as

story points. No set formula exists for defining the size of a story, so release teams can use various

techniques centered on small team collaboration to reach consensus on the number of points for each

story. Teams base story-point estimates on the amount of effort involved in developing the feature, its

relative complexity, and the inherent risks. For example, a small, simple story could be assigned one

point, whereas a moderate story could assign eight points –meaning that the associated product would

take eight times as long to develop. This strategy provides a way to compare the size of one story to

another, thus ultimately enabling programs to comparatively measure the size of the entire pool of

requirements. Some common scoring systems that teams may use to assign story point complexity

measures include Fibonacci series, ideal days, or small-medium-large.

After developing user stories, the Agile team prioritizes them into what becomes the product backlog,

and then constructs a release from the product backlog. The number of user stories that comprise a

release is based on the sprint schedule measured against the team’s estimated velocity (a measure of

productivity unique to the Agile development method). Programs can initially measure team velocity

using historical values or by making a forecast based on the skill sets of the team and the team’s

experience with the specific product or technology. After the first sprint, the team selects the user

stories for the next iteration and the team working on each story makes a more fine-tuned estimate of

the appropriate story points for that sprint. The team can then estimate whether it can build the

proposed set of stories within the sprint timeframe, given the team’s actual velocity.

Teams regularly conduct this activity and reassess the points of the backlog items based on insight

obtained from recent developments. This iterative approach increases the fidelity of estimates over

time. The release-level estimate is at a high level, while sprint-level estimates are more refined and

detailed to help the team use the cost estimates to manage the project effectively.

As the program progresses through the development process, the program should examine how closely

the initial estimates match actual effort, if stories were added or removed from a release, and if the

estimating methodology or value for the story changed. Tracking the planned versus actual progress of

http://en.wikipedia.org/wiki/Fibonacci_number

45

completed iterations against the story points that remain to be completed, using a burn-down chart (see

Figure 3), can help to track the progress of the Agile development.

Key Questions to Validate Estimates:

 Does the development team have good historical data that it can refer to when making new

estimates?

 Is the team’s velocity updated regularly and used to scope sprints?

 Does the development team have strong knowledge/experience in the user domain?

 Does the development team have strong knowledge of/experience with the technologies?

 Do all development teams use a consistent estimation method?

For additional information on cost estimates for Agile development, see:

 Estimating on Agile Projects by Scott Ambler

 Agile Estimating and Planning by Mike Cohn

 Agile Estimating Articles

12 Metrics

Programs that adopt Agile methods must tailor the metrics traditionally used by DoD to reflect the

different processes and artifacts used in Agile. Agile metrics focus primarily on the development team

during sprints. Programs use work elements (e.g., story points, staff hours, task lists, etc.), burn-down

charts, and velocity to track progress and measure productivity, costs, schedule, and performance.

A program office and contractor can track a few dozen metrics for requirements, cost, schedule,

performance, architecture, size/complexity, test, and risk. The following paragraphs describe some

common metrics a program office could manage.

12.1 Requirements Metrics

User stories offer the best measure of requirements in an Agile program. Evaluating when user stories

are implemented or defined depends on how well the team understands the features requested, the

features actually delivered, and the degree of change in requirements and user priorities.

Recommended metrics to monitor requirements include:

 Number of stories selected for a sprint

 Number of stories completed during a sprint

 Number of new feature stories added to a product backlog

 Number of user stories re-prioritized

 Number of changes to the stories selected for a sprint

Results that should draw attention to problems include metrics that show the team often fails to

complete the number of stories selected for a sprint, or user stories that the team constantly defers

(lower priority). Managers must recognize that there are several reasons why a team may not complete

http://www.drdobbs.com/architecture-and-design/estimating-on-agile-projects/223100694?cid=Ambysoft
http://www.amazon.com/Agile-Estimating-Planning-Mike-Cohn/dp/0131479415/ref=sr_1_1
http://cf.agilealliance.org/articles/article_list.cfm?CategoryID=34

46

selected stories. Perhaps the team routinely underestimates the complexity of the user stories or lacks

some necessary skillsets, or the introduction of a new tool added a learning curve for the team. Teams

may defer user stories from sprint to sprint because of poor estimation. As previously noted, it may take

a few sprints for the team to achieve confidence and accuracy in its estimates. The problem could also

lie in dependencies between stories. If a high-priority user story depends on one lower in the backlog,

the team cannot execute it until after it has completed the less critical item.

12.2 Cost Metrics

Work elements and the number of stories completed in a sprint determine cost. The costs per work

element metrics are subjective, and vary according to the complexity of the stories in a sprint and the

number of team members contributing to that sprint. Work elements are typically not equivalent to

time, and programs must take this into consideration when evaluating these metrics. As described

previously, teams may also need several sprints to “normalize” cost metrics, and the cost per work

element may fluctuate in the beginning. Figure 18 provides sample work element tracking charts. This

metric also depends heavily on the accuracy of the estimates and stability of the team’s velocity.

Recommended metrics to manage cost include:

 Planned cost per work element

 Actual cost per work element

 Total work elements committed to sprint (velocity)

 Total hours logged against all stories in a sprint

 Total work elements completed in a sprint

Figure 18 Sample Cost Metrics Charts

Since cost metrics are based on work elements and velocity, inaccurate estimates throw off the planned

versus actual costs. Therefore, programs must consider a team’s ability to make accurate estimates

when looking at program costs in the early stages. If estimation continues to be a problem, the program

management should refer to the suggested guidelines in section 11 of this document.

12.3 Performance Metrics

Agile programs deliver a potentially shippable feature at the end of each sprint, with a more fully

functional capability delivered at the end of the release. This iterative approach allows for early

47

detection of potential problems and delays and allows the program to make adjustments that reduce

impact on overall program performance and delivery. Figure 19 provides a sample performance metric

chart. Recommended metrics to monitor performance include:

 Number of user stories accepted

 Number of bugs discovered by user after release

Figure 19 Sample Performance Metric Chart

Agile processes also include and engage the stakeholders throughout the entire project lifecycle.

Stakeholder involvement throughout the Agile process helps the development team to quickly and

easily clarify requirements and respond to user requests, thus implementing features more likely to be

accepted by the user. User acceptance of capabilities for each user story means that the team is fulfilling

requirements and responding to change. This means that Agile projects create high-quality products,

well aligned with stakeholder expectations.

The iterative nature of Agile allows for more frequent collection of metrics. Programs must balance the

benefits of timely and useful metrics against the burden that collecting and reporting the metrics places

on the team. Programs should determine a frequency that reflects when significant changes or trends

can be observed and changes may be made.

Ideally, programs should use tools that automatically collect and report metrics. Most Agile

management tools track, manage, and report metrics out of the box.

12.4 Agile and EVM

Earned Value Management (EVM) for an Agile development program has been debated across federal

acquisition and Agile communities. The value and effective implementation of EVM in traditional

acquisition programs has also been an ongoing challenge. A 3 Jul 07 OSD/AT&L memo highlights:

“EVM is considered by many in the project management community to be the best option currently

available for holding all parties accountable for the effective management of large and complex

http://www.softwaretestingclass.com/70-comprehensive-agile-project-management-tools-list/
http://www.softwaretestingclass.com/70-comprehensive-agile-project-management-tools-list/
http://www.acq.osd.mil/evm/docs/PARCA_Authorities_Memo.pdf

48

projects. EVM provides a disciplined approach to managing projects successfully through the use of

an integrated system to plan and control authorized work to achieve cost, schedule, and

performance objectives. The fidelity of the information produced by the EVM System is critical to

providing an objective assessment of a program’s performance from which well-informed

management decisions can be made. Moreover, EVM is not just a cost report; it is a tool to help

program managers and their team members operate more effectively in managing their programs.”

Contract type is a key consideration with EVM. EVM is required on cost or incentive contracts at or

above $20 million. Use of EVM on FFP contracts is limited to only when the PM believes there is

significant schedule risk, which should not be the case with time-phased releases in Agile. EVM does not

apply to T&M/Services contracts. See the DoD EVM website for official policies and FAQs.

Given the dynamic and iterative structure and processes of Agile, implementing an EVM system can

pose a significant challenge with little value. Agile embraces responding to changes, not “controlling

authorized work”. As changes are made throughout development, effective reporting against cost,

schedule, and performance against a baseline is difficult. The metrics outlined in this section meet the

intent of EVM to provide a disciplined approach to manage programs by providing key insight into

progress and issues.

Key Questions for Validating Metrics:

 What metrics does the Program Management Office use to manage the program?

 Which of these are provided by the contractor and which by the government?

 How will these metrics be collected and used? What types of decisions will be made as a result?

 What metrics are shared with program stakeholders? With senior leadership?

 What contractor incentives are tied to these metrics?

 Are a process and culture in place to ensure accurate data is collected?

See also:

 Project Management's Not So Odd Couple (EVM and Agile) By John Zyskowski, FCW

 AgileEVM: Measuring Cost Efficiency Across the Product Lifecycle by Tamara Sulaiman, InfoQ

 Stakeholder Needs and Expectations, Planning your Agile Project and Program Metrics by William A.

Broadus III, DAU

13 Testing

Testing in an Agile environment requires upfront engagement and collaboration with the testing and

certification/accreditation communities to design processes that support rapid development and

deployment cycles. Ensuring early and active involvement of testers and certifiers in the planning stages,

and integrating these personnel with the development team, reduces program risk, costs, and

schedules, while providing timely insight to inform the development process, thus increasing the

software quality. Figure 20 compares the serial approach to testing in a traditional program and the

integrated approach of testing in an Agile program. In the Agile model, testing occurs in line with

http://www.acq.osd.mil/evm/index.shtml
http://fcw.com/Articles/2011/01/17/HOME-PAGE-Tech-Briefing-Agile-EVM.aspx?Page=1
http://www.infoq.com/articles/agile-evm
http://www.dau.mil/publications/DefenseATL/DATLFiles/Nov-Dec2013/Broadus.pdf

49

development during the sprints, followed by independent test and certification The more active testers

are during the sprints, the more streamlined the final release testing following the last sprint.

Figure 20: Serial vs. Integrated Testing

When teams convert requirements into user stories, associated acceptance criteria are essential, as

testing then can focus less on determining pass/fail and more on how the software performs. Agile

approaches place strong emphasis on automated tests and continuous integration throughout

development to provide developers immediate feedback on software quality. Automated tests and

continuous integration also support regression testing to ensure that code from new sprints integrates

with previous code deliveries. These testing activities accommodate frequent updates and deliveries,

allowing developers to continue working until software meets the acceptance criteria.

Ideally, the government should establish the test infrastructure at a portfolio or enterprise level,

spanning and supporting multiple programs. This requires upfront planning, investment, and resources.

Leveraging a common infrastructure enables portfolios to test and certify their component programs

more effectively and efficiently. This also reduces infrastructure and staffing costs while increasing

interoperability, security, and agility. The DoD (the Defense Information Systems Agency in particular)

has made some strategic investments in common test environments and ranges that Agile programs

might use.

Verification testing confirms that the system element meets the design-to or build-to specifications

defined in the functional, allocated, and product baselines. In an Agile environment verification is an

integral element of each sprint. At the end of each sprint, the developers demonstrate the software

functionality to the users, testers, program office, and related stakeholders. Testers use acceptance

50

criteria to verify that the software meets the design, and the stakeholders verify that it meets intended

operational and technical objectives. If so, they accept the user story as done.

Another integral element of Agile testing, validation, answers the question: “Is this [software] the right

solution to the problem?” Validation occurs through frequent meetings and reviews to determine “Is

this what the users/customers/stakeholders want?” Active involvement in sprint reviews and planning

allows users and stakeholders to see what the team has done and shape what the team will do next.

When developing a test strategy, programs adopting Agile should consider including the following

elements:

 Integrate test and certification teams into the acquisition and development cycles at the very

beginning, including requirements determination and definition. These teams must include

testers knowledgeable about the applicable success criteria in the developmental, operational,

interoperability, information assurance, information security, accreditation, system, and mission

areas.

 Challenge the resulting test and certification team to create fully integrated test plans that

combine required test points and eliminate duplicative and non-value-added testing.

 As test data is collected, make it available to analysts representing the full life-cycle team to

permit early identification of discrepancies, limitations, and achievement of success criteria.

 Develop and leverage common test infrastructures to foster effective use of resources, rapid

testing, and improved integration.

 Use automated test scripts and tools, including those established for common development and

test platforms, to perform regression testing efficiently and to further accelerate testing.

 Establish a continuous integration and deployment methodology to build the system, execute

the regression test suite(s), and deploy the working builds to a separate environment on a

regular, frequent (e.g., nightly) interval. This translates into early identification of technical,

security, operational, and system deficiencies so that appropriate and timely corrective actions

can take place prior to deploying the capability.

 Use a robust defect tracking and reporting system to drive immediate fixes or additions to the

program backlogs.

Key Questions to Validate Test Strategies:

• Are testers actively involved throughout the requirement, planning, and development phases?

• Do users, government testers, and certifiers review interim capabilities delivered via sprints?

• Do the developers, government, and certifiers make maximum use of automated tests, test data?

• Are joint interoperability testing and security testing integrated in the testing activities and

environment?

• Do Agile projects for the government have a common test environment, tools, methods, data

collection, and processes available?

51

• As requirements are translated into user stories (or equivalents), are acceptance criteria and/or test

cases well understood and used as the primary measure for the testing community?

• Are test and certification strategy documents written and approved at the capstone level while

reserving release-/sprint-specific content for small documents in the release planning phase?

• Do the test strategy and backlog include or consider the following: functional (requirements) testing,

non-functional requirements testing (security and interoperability), SW and HW interfaces,

integration testing, end-to-end testing, story tests, exploratory testing, scenario testing, usability

testing, user acceptance testing, unit testing, component testing, performance and load testing,

security testing, maintainability testing, interoperability testing, reliability testing, compatibility

testing, and regression testing.

• Are sufficient testers assigned to the Agile development effort? What are their Agile qualifications?

What is their Agile experience level?

See also

 Test and Evaluation for Agile by Dr. Steve Hutchinson

 Shift Left by Dr. Steve Hutchinson, Defense AT&L Magazine

 Shift Left! editorial by Dr. Steve Hutchinson, ITEA Journal, June 2013

 Agile Testing Strategies by Scott Ambler and Associates

 Agile Testing: A Practical Guide for Testers and Agile Teams by Lisa Crispin and Janet Gregory

 Articles on Testing in Agile

14 Deployment/Sustainment

Programs will deploy capabilities to users upon a successful deployment decision by the authorities in

the acquisition and operational communities. Capabilities are usually deployed at the release level;

however, they may also be deployed at the sprint level, given sufficient testing, certification, and

approval. The first sprint of a release for example can be fielded independently if it addresses a critical

security issue from a previous deployment.

All IT acquisition programs including those using Agile development must comply with the Clinger-Cohen

Act and information assurance policies. Testing, certification, and approvals must be integrated early in

development and streamlined to support short deployment timelines. As with any IT development,

programs must have a clear strategy to deploy and sustain the capability.

The iterative nature of Agile development allows for continual evolution of capabilities and addressing

software deficiencies. As users operate and sustain the IT capabilities, there should be continual

feedback to the product manager to shape the program backlog. Direct user feedback to the program

office and development team is also critical to drive future releases.

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA534638
http://www.dau.mil/publications/DefenseATL/DATLFiles/Sep-Oct2013/Hutchison.pdf
https://acc.dau.mil/adl/en-US/658578/file/73083/jite-34-02-133.pdf
http://www.ambysoft.com/essays/agileTesting.html#AgileTestingStrategies
http://www.amazon.com/Agile-Testing-Practical-Guide-Testers/dp/0321534468
http://cf.agilealliance.org/articles/article_list.cfm?CategoryID=25

52

15 Pulling It All Together – Potential Agile Program Structures

The structure shown in Figure 21 represents one potential tailoring of acquisition policies such as DoDI

5000.02 and BCL to enable small, frequent releases of IT capabilities to users. The smaller the program,

the more flexibility it has to adopt Agile practices and benefit from reduced oversight and regulations.

Agile development works best when building additional functionality into an existing platform or

GOTS/COTS product. Existing programs could transition to an Agile approach for subsequent Increments

or Block upgrades after establishing the operational baseline (Increment 1); for example, GCSS-J

transitioned to an Agile approach starting with Block 7 in 2008.

In this potential structure, the program would still have a MDD and Milestones A and B, but these

reviews and the early phases would be heavily tailored and streamlined. The goal is to get from MDD to

Milestone B in less than 18 months. This would provide sufficient analysis and planning while beginning

software development as soon as possible. Programs could use enterprise- and portfolio-level

documentation and processes, such as contracting vehicles, enterprise architectures, existing IT

platforms, testing environments, and capstone-level DoD 5000 documentation to enable this rapid

timeframe.

Figure 21: Potential Agile Program Structure

Continuing with the example structure above, the releases shown are six months long, preceded by a

one-month planning phase. Various factors, including user demands and environment, program risk,

developer environment, budget constraints, contracts, and acquisition oversight drive the duration of

the releases and sprints. Each release has a deployment decision – a streamlined and focused review,

similar to the traditional Full Deployment Decisions in DoDI 5000. 02 – in which the program draws on

53

inputs from the acquisition, testers, certifiers, and user communities to decide whether to deploy the

capability. Following deployment, the user community operates and maintains the capability according

to a defined strategy. Frequent collaboration with the operational community should generate inputs

for the program backlog to address deficiencies or add new capabilities. This collaboration also helps to

determine the relative priorities of the items on the program backlog so that the next release and sprint

address the highest priority requirements.

Throughout development, the program office should develop and evolve an architecture to define the

structure of the system. This process could include aligning and integrating the new architecture with an

enterprise architecture. The architecture should include the software elements being developed and

integrated with other software, and the hardware on which it will operate. This architecture should

serve as the foundation that system engineers use to collaborate internally and externally on the

development and evolution of an integrated IT system.

The rapid pace of development and response to changes cannot accommodate a series of gate reviews

and significant upfront documentation. Oversight in an Agile environment focuses less on a series of

gate reviews and more on in-progress reviews of an empowered team. The small, frequent releases

should be reviewed and approved at the lowest possible level, likely a Program Executive Officer or

related official. SAEs/Component Acquisition Executives, and if necessary the OSD level, should conduct

their reviews at the portfolio level, with content highlighting what the program accomplished in the past

year and what its plans for the next year.

The approach defined so far implies a single developer team producing releases sequentially. Depending

on the nature of the development, funding, and acquisition/contract strategies, a program could have a

single contractor with multiple development teams, or multiple contractors developing releases in

parallel. The latter approach taps multiple sources of expertise to develop the comprehensive solution.

However, it requires increased government planning, coordination, and integration.

Additional considerations for enabling an Agile environment include technology prototyping and

software platforms. Ideally, programs would manage or host a software platform at the portfolio or

enterprise level for use by multiple acquisition programs. The platform can include an IT environment

for development, integration, test, and production/operation, as well as software developer tools and

resources that teams can leverage. By using common platforms, programs can focus their energy on the

core capabilities unique to their users’ requirements, avoid building duplicative, closed infrastructures,

and reduce time, cost, and risk to the program.

Technology development and competitive prototyping are continuous activities that span the entire

program lifecycle. The program could establish a technology development environment, likely a

government – contractor partnership, with a consistent budget to allow for continual evaluation of

COTS/GOTS products and maturation of technologies. Future releases could then quickly leverage

mature technologies and integrate existing products previously evaluated in a development

environment. Meanwhile, maturing technologies external to the time-boxed development releases

allows for greater schedule and resource flexibility. Maintaining a continual development environment

54

enables innovations to emerge from the team or from external sources from government R&D

organizations to small businesses.

This approach and the accompanying suggestions represent just a few of many potential structures a

program adopting Agile could consider. Throughout acquisition policies and statements, OSD

encourages program managers to tailor their programs to best deliver capabilities to the users. Each

program should tailor its structures to best fit its environment, the needs of its stakeholders, and the

leadership direction. Structures vary based on program scope, risk, technology maturity, complexity,

integration, operational urgency, costs and budgets, contractors, government resources, and other

factors. As the program is established, the team and stakeholders must ask questions such as those

listed below.

Key Questions:

 How is the program broken up into releases and sprints (or related terms)?

 How frequently is capability delivered to users in the operational environment?

 How frequently do contractors demonstrate and deliver capabilities to the government?

 What factors were considered in determining these timelines? (E.g. user demand, integration risks,

contracting, technical maturity, training and documentation)

 Do stakeholders agree with the release tempo?

16 Scaling Agile

While Agile works best with small, self-organized, co-located teams, some mid-to-large programs will

apply Agile using multiple teams, parallel developments, and multiple contractors. Larger programs may

have to use more of a hybrid approach with traditional development methods. Adapting Agile practices

to larger projects requires sound engineering discipline to ensure successful integration of multiple

smaller development efforts to support the objectives of the larger project. Simple designs,

architectures, processes, and requirements enable multiple teams to achieve epic goals.

A program with multiple development teams requires coordination across teams beyond the daily team

meetings. This could occur by having the scrum masters of each team meet daily, or as needed based on

the level of integration, otherwise referred to as a scrum-of-scrums. Other functional experts will likely

need to meet across teams to coordinate on architecture, testing, costs, resources, performance, and

other integration touch points. This, in turn, may require staff at a level above the teams to facilitate

coordination and integration and take responsibility for enterprise designs, architectures, processes,

metrics, and artifacts. The project team must tailor each of these engineering efforts to ensure

appropriate use of rigorous methods without introducing heavyweight processes that would negate the

benefits of an Agile approach.

Large programs must have clear structure that defines the mission and business environment to guide

the partitioning of the larger scope into development efforts of 12 months or less and possibly into

multiple parallel development efforts. As previously noted, a technical architecture should frame the

55

separate development efforts and ensure that individual products can operate in the target

environment. Agile emphasizes speed and responsiveness to changing user needs over highly detailed

up-front definition of the system architecture. Therefore each program must include periodic evaluation

of the evolving technical architecture to ensure that the overall system continues to reflect sound

engineering principles such as extensibility, supportability, and scalability.

Integration of multiple, smaller development efforts requires a disciplined approach that begins with

high-level “roadmaps” describing the planned evolution of the larger system. As individual development

efforts complete their tasks, testing must ensure that the separate components align with the roadmap

and conform to the overarching technical architecture. The following items represent additional risk

areas related to managing large-scale, multifaceted IT programs using an Agile methodology:

 Cost Estimation. When multiple teams work in parallel to complete an effort, estimating costs

can become complicated, as the teams estimate and accomplish their tasks at different rates.

Program managers must understand the estimation processes the teams use and how they

relate to the overall cost of the program.

 Architectures. Although the Agile approach centers on delivering capabilities rapidly, program

managers cannot ignore significant underlying architectural requirements. Short-term planning

to meet iterative capabilities can result in tightly coupled architectures that impose heavy costs

if the program must add new capabilities down the line. Especially when a project involves

cross-cutting requirements such as security, performance, and availability, program managers

must ensure that the developer devotes time early in the project to designing an infrastructure

that can support iterative development and overarching quality attributes.

 Communication. Agile practices require close and constant communication among all

stakeholders. If multiple teams are working on a project, the amount of communication needed

increases according to the formula n(n–1)/2, where n is the number of teams. Program

managers must consider how to expedite communications, especially when the teams are

geographically dispersed.

 Software Code Integration. Continuous integration involves frequent end-to-end builds of the

changing code base, which becomes especially critical when the software development effort

increases in scope and requires multiple systems to interact in order to meet the end user’s

needs. Program managers should ensure their programs use the appropriate development and

test tool environments, version control, and change management mechanisms to incorporate

continuous integration into the development effort.

 Testing. Agile emphasizes the importance of performing tests early in the software development

life cycle and testing the capabilities at each release. In addition to unit and acceptance testing,

regression testing is critical to delivering shorter and more frequent iterations. As each change is

introduced, programs should perform regression testing to ensure the integrity of the overall

system.

 Requirements Derivation. Larger scale programs naturally include many requirements that may

become backlogged. Program managers and product owners should define implied

requirements, prioritize quality and architecturally significant attributes, and place high priority

56

on requirements that support end-to-end capabilities. They should then review the activities

backlog periodically and ensure that items are addressed in priority order.

One resource to explore is the Scaled Agile Framework in Figure 22 developed by Dean Leffingwell.

Figure 22 - Scaled Agile Framework

See also:

 Agile Architecture: Strategies for Scaling Agile Development by Scott Ambler

 Scaling Agile Methods by Donald Reifer, Frank Maurer, and Hakan Erdogmus, IEEE, 2003

 Scaling Software Agility: Best Practices for Large Enterprises by Dean Leffingwell

 Five Success Factors for Scaling Agile by Robert Holler and Ian Culling

http://scaledagileframework.com/
http://deanleffingwell.com/
http://www.agilemodeling.com/essays/agileArchitecture.htm
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1207448
http://www.amazon.com/Scaling-Software-Agility-Practices-Enterprises/dp/0321458192/ref=pd_sim_sbs_b_6
http://www.versionone.com/White_Papers/Five_Success_Factors_for_Scaling_Agile/

57

17 Summary

The DoD can benefit greatly by adopting many Agile development practices. While Agile is not a

panacea to address all the IT acquisition challenges, it provides a set of core principles to shape the DoD

culture away from the large monolithic systems for IT. Tailoring program structures and processes

around small, frequent releases can reduce program risk and be responsive to change. Close user

involvement throughout development ensures that each release is addressing the highest operational

needs. With the rapid pace of change in IT, the DoD needs the processes and practices of Agile to

integrate the latest technological advancements to address an increasingly complex operational

environment.

This guide was created to think through the major defense acquisition policies and processes to help

program offices and PEOs adopt the benefits of Agile development. While the commercial world has

achieved many successes with Agile, federal agencies, and in particular the DoD, are still in the early

stages of applying Agile development practices. The government has quite a different set of challenges

than the commercial sector. For example, the nature of the government-contractor relationship, as well

as other unique federal policies and processes make it difficult to replicate a pure commercial Agile

environment. However, these challenges should not dissuade a program from considering an Agile

strategy. Agile has the potential to dramatically change how the DoD delivers IT capabilities, when it is

used in the right environment, with active stakeholder support, and strong government contractor

relationship. It will take time to effectively integrate Agile in the DoD IT acquisition environment. It will

take strong leadership to champion the cultural changes needed to enable Agile practices, active

support and collaboration across all the major acquisition disciplines, and a strong program

management office that is empowered to break from traditional practices.

58

Appendix A: Agile Resources

Agile Papers, Reports, and Briefings

 MITRE 2011 Handbook for Implementing Agile in DoD IT

 Agile Acquisition briefing to NATO NCIA GM by Pete Modigliani, MITRE

 Considerations for Using Agile in DoD Acquisitions, Software Engineering Institute (SEI)

 Agile Methods: Selected DoD Management and Acquisition Concerns, SEI

 Towards a More Agile Gov’t: The Case for Rebooting Federal IT Procurement by Benjamin Balter

 GAO Report 12-681 Effective Practices and Federal Challenges in Applying Agile Methods

 DoD Agile Adoption by Mary Ann Lapham, SEI

 Parallel Worlds: Agile and Waterfall Differences and Similarities, SEI

 More on 804, and Really, Why by James Boston, Defense AT&L Magazine

 The Challenges of Being Agile in DoD by William Broadus, Defense AT&L Magazine

Agile Methods

 Scrum
 Extreme Programming (XP)
 Kanban
 Feature Driven Development (FDD)
 Dynamic Systems Development Method (DSDM)
 Lean software development
 Scrum-ban
 Test Driven Development

Agile Websites

 Agile Manifesto

 Scaled Agile Framework

 Agile Connection

Agile Blogs

 Disciplined Agile Delivery blog by Scott Ambler and Mark Lines

 Agile Management by Version One

 Scott Ambler's IBM Blog

 Leading Answers Blog

 Effective Practices for Software Solution Delivery by Scott Ambler

 Agile Mistakes to Avoid

http://www.mitre.org/work/tech_papers/2011/11_0401/11_0401.pdf
http://www.mitre.org/sites/default/files/pdf/PR_12-4964.pdf
http://www.sei.cmu.edu/reports/10tn002.pdf
http://www.sei.cmu.edu/reports/11tn002.pdf
http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID1966241_code1753579.pdf?abstractid=1966241&mirid=1
http://www.gao.gov/products/GAO-12-681
http://www.crosstalkonline.org/storage/issue-archives/2012/201201/201201-Lapham.pdf
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2013_004_001_62918.pdf
http://www.dau.mil/pubscats/ATL%20docs/May_Jun_2012/Conferences.pdf
http://www.dau.mil/pubscats/ATL%20Docs/Jan_Feb_2013/Broadus.pdf
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Kanban_(development)
http://en.wikipedia.org/wiki/Feature_Driven_Development
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Scrum_(software_development)#Scrum-ban
http://en.wikipedia.org/wiki/Test-driven_development
http://agilemanifesto.org/
http://scaledagileframework.com/
http://www.agileconnection.com/
http://disciplinedagiledelivery.com/
http://blogs.versionone.com/agile_management/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/?lang=en
http://leadinganswers.typepad.com/leading_answers/
http://www.ambysoft.com/
http://leadinganswers.typepad.com/leading_answers/2007/03/introducing_agi.html

59

Agile Books

 Agile Software Development: Best Practices for Large Software Development Projects by

Thomas Stober, Uwe Hansmann

 Agile Project Management: Creating Innovative Products by Jim Highsmith

 Scaling Software Agility: Best Practices for Large Enterprises by Dean Leffingwell

 Succeeding with Agile: Software Development Using Scrum by Mike Cohn

 Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the

Enterprise by Dean Leffingwell

 The Human Side of Agile - How to Help Your Team Deliver by Gil Broza

 Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise by

Scott W. Ambler and Mark Lines

 Changing Software Development: Learning to Become Agile by Allan Kelly

Agile Organizations

 Agile Alliance

 PMI Agile

 ADAPT

 AgileDC

Acquisition References

 Interim DoD Instruction (DoDI) 5000.02, 25 Nov 13

 DoD Directive (DODD) 5000.1

 CJCSI 3170.01H

 JCIDS Manual

 Defense Acquisition Guidebook

 Acquisition Community Connection

 Defense Acquisition Portal

 Better Buying Power

http://www.amazon.com/Agile-Software-Development-Practices-Projects/dp/3540708308
http://www.amazon.com/Agile-Project-Management-Creating-Innovative/dp/0321658396/ref=pd_sim_sbs_b_5
http://www.amazon.com/Scaling-Software-Agility-Practices-Enterprises/dp/0321458192/ref=pd_sim_sbs_b_6
http://www.amazon.com/Succeeding-Agile-Software-Development-Using/dp/0321579364/ref=pd_sim_sbs_b_2
http://www.amazon.com/Agile-Software-Requirements-Enterprise-Development/dp/0321635841/ref=pd_sim_sbs_b_1
http://www.amazon.com/Agile-Software-Requirements-Enterprise-Development/dp/0321635841/ref=pd_sim_sbs_b_1
http://www.amazon.com/gp/product/0988001624/ref=as_li_qf_sp_asin_il?ie=UTF8&camp=1789&creative=9325&creativeASIN=0988001624&linkCode=as2&tag=thehucom-20
http://www.amazon.com/Disciplined-Agile-Delivery-Practitioners-Enterprise/dp/0132810131/ref=pd_sim_b_6
http://www.amazon.com/Changing-Software-Development-Learning-Become/dp/047051504X/ref=sr_1_1?ie=UTF8&s=books&qid=1278717938&sr=8-1
http://www.agilealliance.org/
http://www.pmi.org/certification/new-pmi-agile-certification/pmi-agile-certification-pilot-program.aspx
http://www.afei.org/workinggroups/Adapt/Pages/default.aspx
http://agiledc.org/
http://www.dtic.mil/whs/directives/corres/pdf/500002_interim.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500001p.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf
https://acc.dau.mil/adl/en-US/267116/file/41245/JCIDS%20Manual%20-%2019%20Jan%202012.pdf
https://dag.dau.mil/Pages/Default.aspx
https://acc.dau.mil/CommunityBrowser.aspx
https://dap.dau.mil/Pages/Default.aspx
http://bbp.dau.mil/

60

Appendix B: GAO Report on Agile

GAO Report 12-681 Effective Practices and Federal Challenges in Applying Agile Methods

The GAO identified 32 practices and approaches as effective for applying Agile software development

methods to IT projects. The practices generally align with five key project management activities related

to software development: strategic planning, organizational commitment and collaboration,

preparation, execution, and evaluation. Officials who have used Agile methods on federal projects

generally agreed that these practices are effective. Specifically, officials from at least one agency found

each practice effective, and officials from all five agencies found 10 of those practices effective.

The 10 best practices are:

1. Start with Agile guidance and an Agile adoption strategy.

2. Enhance migration to Agile concepts using Agile terms, such as user stories (used to convey

requirements), and Agile examples, such as demonstrating how to write a user story.

3. Continuously improve Agile adoption at both the project level and organization level.

4. Seek to identify and address impediments at the organization and project levels.

5. Obtain stakeholder/customer feedback frequently.

6. Empower small, cross-functional teams.

7. Include requirements related to security and progress monitoring in your queue of unfinished

work (the backlog).

8. Gain trust by demonstrating value at the end of each iteration.

9. Track progress using tools and metrics.

10. Track progress daily and visibly.

GAO identified 14 challenges with adapting and applying Agile in the federal environment:

1. Teams had difficulty collaborating closely.

2. Procurement practices may not support Agile projects.

3. Teams had difficulty transitioning to self-directed work.

4. Customers did not trust iterative solutions.

5. Staff had difficulty committing to more timely and frequent input.

6. Teams had difficulty managing iterative requirements.

7. Agencies had trouble committing staff.

8. Compliance reviews were difficult to execute within an iteration time frame.

9. Timely adoption of new tools was difficult.

10. Federal reporting practices do not align with Agile.

11. Technical environments were difficult to establish and maintain.

12. Traditional artifact reviews do not align with Agile.

13. Agile guidance was not clear.

14. Traditional status tracking does not align with Agile.

http://www.gao.gov/products/GAO-12-681
http://www.gao.gov/products/GAO-12-681

61

Appendix C: Agile Roles and Responsibilities

Program Manager

The program manager identifies and sets the vision, roadmap, requirements, and funding for the overall

program, and guides the program toward an iterative and Agile approach that supports the frequent

delivery of capabilities through multiple, more frequent releases. The program manager retains the

responsibility for managing the requirements, funding, and acquisition processes while also overseeing

the planning of each release and high-level program increment. In addition, the program manager

approves the results of each release.

As user participation is a critical element of the Agile process, the program manager must manage the

overall relationship with the user community. In addition, the program manager must collaborate

regularly with the project manager and end users to define and prioritize requirements and plan

capability releases, and must coordinate with the contracting officer and cost estimator to set up a

business environment to support an Agile development strategy.

Project Manager

The project manager organizes the development process in terms of time-boxed iterations that lead to a

release of a capability. The project manager primarily facilitates and coordinates participation by the

end users and the development team and leads iteration and release reviews. The project manager

engages actively with the architecture owner and systems engineer to define and prioritize the project

requirements, validate the design, and plan the iterations. In addition, the project manager maintains

the list of prioritized requirements and ensures that the defined and derived requirements address the

user’s most important operational needs. The project manager, acting as the Contracting Officer’s

Technical Representative, monitors the performance of each iteration-level contract or order and signs

off on the results of each iteration.

Product Owner

A product owner is typically a representative of the operational community who is responsible for

managing requirements, tradeoffs, and collaboration between the acquisition and user communities.

The product owner manages requirements, typically via a series of backlogs, coordinating the priorities

with appropriate user, technical, and other stakeholders. The product owner conveys the CONOPS to

the release and development teams to ensure a common understanding, provides feedback on interim

developments, and coordinates demonstrations and feedback with a broad user base. Ideally, the

product owner should have recent practical experience at operational levels and should maintain

regular formal and informal contact with the primary user community. While co-location with the

program office or developer is ideal, the product owner should maintain frequent (e.g., daily)

communication with the release team.

62

End Users or End User Representatives

End users work closely with the Agile team to convey operational concepts and requirements/needs and

provide feedback on developed capabilities. They participate regularly in team meetings and in iteration

and release reviews and actively collaborate with the development team, particularly during continuous

testing activities and post-development limited assessments and acceptance testing.

In situations where no primary users are available to engage with the Agile team on a regular, ongoing

basis, the primary users can designate representatives to advocate their values and needs. These

representatives are empowered to speak on behalf of the user community in prioritizing requirements

for each release and conveying program progress and issues. Ideally, these representatives should have

recent practical experience at operational levels and should maintain regular formal and informal

contact with the primary user community. For best results in their capability development role, the

representatives should rotate between operational assignments to maintain a relevant experience base.

Architecture Owner

The architecture owner is a government employee and an integral part of the development team. The

architecture owner creates architectures and designs in an iterative manner to ensure that designs

evolve over the course of the releases, participates in iteration and release reviews to ensure the

development complies with the design, and monitors implementation of the design. As issues arise, the

owner modifies the architecture.

Independent Tester(s)

The independent tester/team validates the capabilities being produced against the end user’s top-

priority needs, the design specifications, and standards. The tester/team collaborates with the

architecture owner, system engineer, and project manager to understand the requirements and the

design, iteration, and release goals and to ensure traceability to the test cases and results. The

tester/team also regularly participates in meetings and reviews with the development team and end

users. In addition to incorporating testers into the development team, the government should assign an

independent tester or test team to execute acceptance tests at the end of each iteration and release.

Systems Engineer

The systems engineer manages the releases; oversees systems implementations, O&M, and transition;

and integrates all the engineering disciplines and specialty groups into a team effort to form a

structured development process. They collaborate regularly with the project manager and architecture

owner to design enterprise and program-specific solutions, manage integration, and identify/prioritize

future requirements. They are the architecture owner’s primary counterpart on the development team

and works with the architecture owner to ensure that the technical baseline integrates architectural

artifacts and that architectural and design dependencies are managed across the enterprise. Because

Agile systems deliver smaller capabilities more frequently, the systems engineer has an increased

workload in managing interdependencies, COTS/GOTS capabilities, and technical baselines.

63

Contracting Officer

The contracting officer performs overall management of the solicitation, award, and execution of Agile

development contract(s). The contracting officer (or contract specialist at a minimum) should be

assigned as a dedicated member of the Agile team. The contracting officer works with the program

manager to develop the requirements for the Agile development contract(s) and organizes the

contractual relationship(s) with the development team. The contracting officer will need to actively

manage the Agile contract(s), especially if using a services contract to ensure performance based

requirements are being met, and the labor hours and labor categories are appropriate for the contract.

Cost Estimator

The cost estimator tracks and manages the overall program budget and provides rough cost estimates at

the program level for high-level increments, followed by detailed cost estimates prior to the

development of each iteration. The cost estimator works with the program manager to establish the

overall budget and strategy for high-level releases, and works with the project manager and end users to

plan and prioritize requirements for future iterations. The cost estimating process also helps to inform

decision making on the prioritization of the requirements list. Assigning a cost estimator as a dedicated

member of the Agile team provides the continuity needed to keep pace with the frequency of Agile

releases.

64

Appendix D: DoD 5000 Information Requirements

The following tables contain the information requirements for IT systems as referenced in the Interim

DoDI 5000.02 Table 2 Milestone and Phase Information Requirements, dated November 26, 2013. The

table identifies the applicability of the information requirement for Major Automated Information

Systems (MAIS) and Acquisition Category (ACAT) III programs. Agency-specific policies should be

consulted for programs below the ACAT Level III thresholds for applicability.

Table 5 identifies a core set of acquisition documents prepared by the program. In most cases, these are

considered stand-alone documents.

Table 5 Key Acquisition Documents

Document Applicability

Acquisition Program Baseline MAIS & ACAT III

Acquisition Strategy MAIS & ACAT III

Analysis of Alternatives (AoA) MAIS & ACAT III

Clinger-Cohen Act Compliance MAIS & ACAT III

Cost Analysis Requirements Description MAIS

Frequency Allocation Application
(DD Form 1494)

MAIS & ACAT III
Required only for systems that use the
electromagnetic spectrum)

General Equipment Valuation
MAIS & ACAT III
(Required only when a deliverable end item meets
the requirements for capitalization)

Lifecycle Sustainment Plan (LCSP) MAIS & ACAT III

Post Implementation Review MAIS & ACAT III

Post-System Functional Review Report
MAIS & ACAT III
(Required for space programs only)

Request for Proposal MAIS & ACAT III

System Threat Assessment Report MAIS & ACAT III

Systems Engineering Plan (SEP) MAIS & ACAT III

Test and Evaluation Master Plan (TEMP) MAIS & ACAT III

Table 6 identifies the documents required specifically for Defense Business Systems (DBS).

Table 6 DBS Required Documents

Document Applicability

Business Case
MAIS & ACAT III

Independent Risk Assessment
MAIS (Required only for DBS when directed)

Problem Statement MAIS & ACAT III

Program Certification to the Defense
Business Systems Management Committee

MAIS & ACAT III

Program Charter MAIS & ACAT III

http://www.acq.osd.mil/docs/DSD%205000.02_Memo+Doc.pdf
http://www.acq.osd.mil/docs/DSD%205000.02_Memo+Doc.pdf

65

Table 7 identifies the information requirements that can be combined with one of the above key

documents to streamline acquisition documentation.

Table 7 DoD 5000.02 Information Requirements for Consolidated Documentation

Information Requirement Applicability Notes

Affordability Analysis MAIS & ACAT III
Address in Acquisition Strategy
(Business Case for DBS)

Bandwidth Requirements
Review

MAIS
Documented in the Information
Support Plan (part of the
Acquisition Strategy)

Benefit Analysis and
Determination

MAIS & ACAT III (Applies to
bundled acquisition only)

Address in Acquisition Strategy
(Business Case for DBS)

Business Process Reengineering MAIS & ACAT III
Address in Acquisition Strategy
and LCSP (Business Case for DBS)

Capstone Threat Assessment MAIS & ACAT III
Address in Acquisition Strategy
(Business Case for DBS)

Consideration of the Technology
Issues

MAIS
Address in Acquisition Strategy
and LCSP (Business Case for DBS)

Cooperative Opportunities MAIS & ACAT III
Address in Acquisition Strategy
(Business Case for DBS)

Corrosion Prevention Control
Plan

MAIS (Only required if the
system includes mission critical
hardware that will be operated
in a corrosive environment.

Address in Acquisition Strategy

and LCSP (Business Case for DBS)

Cybersecurity Strategy MAIS & ACAT III
Included as an appendix to the
PPP (addressed in LCSP) or in the
Business Case for DBS.

DoD Component Cost Estimate MAIS & ACAT III
Address in AoA (Business Case
for DBS).

Economic Analysis MAIS
Address in AoA (Business Case
for DBS).

Industrial Base Capabilities

Considerations
MAIS & ACAT III

Address in Acquisition Strategy

(Business Case for DBS)

Information Support Plan MAIS & ACAT III
Address in Acquisition Strategy

and LCSP (Business Case for DBS)

Initial Threat Environment

Assessment

MAIS & ACAT III (Required for

MAIS, optional for all other

programs)

Address in Acquisition Strategy

(Business Case for DBS)

Intellectual Property Strategy MAIS & ACAT III
Address in Acquisition Strategy

and LCSP (Business Case for DBS)

Item Unique Identification

Implementation Plan
MAIS & ACAT III Address in the SEP.

Lifecycle Mission Data Plan MAIS & ACAT III (Only required if Address in Acquisition Strategy

66

dependent on Intelligence

Mission Data)

and LCSP (Business Case for DBS)

Market Research MAIS & ACAT III

Address in Acquisition Strategy

and LCSP (Business Case for

DBS))

Operational Test Plan MAIS & ACAT III
Recommend combining with

TEMP.

Orbital Debris Mitigation Risk

Report

MAIS & ACAT III (Required for

space programs only)

Recommend combining with

Post-System Functional Review

Report.

PESHE and NEPA/E.O 12114

Compliance Schedule

MAIS & ACAT III (Not required for

software programs with no

hardware component)

Address in SEP and LCSP.

Program Protection Plan (PPP) MAIS & ACAT III
Address in Acquisition Strategy

and LCSP (Business Case for DBS)

Should-Cost Target MAIS & ACAT III
Address in Acquisition Strategy

(Business Case for DBS)

Small Business Innovation

Research / Small Business

Technology Transfer Program

Technologies

MAIS & ACAT III
Address in Acquisition Strategy

(Business Case for DBS)

Spectrum Supportability Risk

Assessment

MAIS & ACAT III (Required for

systems that use the

electromagnetic spectrum only)

Address in Acquisition Strategy

and LCSP (Business Case for DBS)

Technology Targeting Risk

Assessment
MAIS & ACAT III

Part of the PPP, address in the

LCSP (Business Case for DBS).

Table 8 identifies the information requirements that will be provided to the program office.

Table 8 Information Requirements Provided to the Program

Information Requirement Applicability Notes

Acquisition Decision

Memorandum
MAIS & ACAT III

Prepared by the Milestone
Decision Authority (MDA).

AoA Study Guidance and AoA

Study Plan
MAIS & ACAT III

Prepared by the Lead DoD
Component.

Capability Development
Document

MAIS & ACAT III
Prepared by requirements
organization.

Capability Production Document MAIS & ACAT III
Prepared by requirements
organization.

Development RFP Release Cost

Assessment
MAIS

Prepared by Director Cost
Accounting and Program
Evaluation (DCAPE).

67

DoD Component Cost Position MAIS
Prepared by the DoD
Component and the Service Cost
Agency.

DOT&E Report on Initial

Operational Test and Evaluation

MAIS & ACAT III (Required for
DOT&E Oversight List programs
only)

Prepared by DOT&E.

Exit Criteria MAIS & ACAT III Prepared by the MDA.

Full Funding Certification MAIS

Prepared by the Component
Acquisition Executive and the
DoD Component Chief Financial
Officer

Initial Capabilities Document MAIS & ACAT III
Prepared by requirements
organization.

Independent Cost Estimate
MAIS (Only required for MAIS in
advance of a report of a Critical
Change)

Prepared by DCAPE

Information Technology and

National Security System

Interoperability Certification

MAIS & ACAT III
Prepared by Joint
Interoperability Test Command
or DoD Components

Operational Test Agency Report

of OT&E Results
MAIS & ACAT III

Prepared by Operational Test
Agency

Operational Mode

Summary/Mission Profile
MAIS & ACAT III

Prepared by the DoD
Component combat developer

68

Appendix E: Acronyms

AoA Analysis of Alternatives

ACAT Acquisition Category

BCL Business Capability Lifecycle

BPA Blanket Purchase Agreement

CD Capability Drop

CDD Capability Development Document

CONOPS Concept of Operations

COTS Commercial off-the-Shelf

CPD Capability Production Document

DCAPE Director, Cost and Program Evaluation

DoD Department of Defense

ECP Engineering Change Proposal

FFP Firm Fixed Price

GOTS Government off-the-Shelf

IDIQ Indefinite Delivery Indefinite Quantity

IGCE Independent Government Cost Estimate

IS Information Systems

JCIDS Joint Capability Integration and Development System

JROC Joint Requirements Oversight Council

LCSP Lifecycle Support Plan

MAIS Major Automated Information System

MDA Milestone Decision Authority

MDD Materiel Development Decision

MOE Measure of Effectiveness

OSD Office of the Secretary of Defense

OT&E Operational Test and Evaluation

PEO Program Executive Office

PMO Program Management Office

PPP Program Protection Plan

PWS Performance Work Statement

RDP Requirements Definition Package

SAE Service Acquisition Executive

SEP Systems Engineering Plan

TEMP Test and Evaluation Master Plan

T&M Time and Material

http://mitrepedia.mitre.org/index.php?title=Joint_Capability%C2%A0Integration_and_Development_System&action=edit&redlink=1

69

